THE GEOLOGY AND ENGINEERING STRUCTURES

of the

CHESAPEAKE AND OHIO CANAL

An Engineering Geologist's Descriptions and Drawings

William E. Davies
Draft 1989
Published 1999

Copyright © 1999. All rights reserved.
C\&O Canal Association, Box 366, Glen Echo, MD 20812-0366.
The C\&O Canal Association is an all-volunteer citizens organization established in 1954 to help conserve of the natural and historical environment of the C\&O Canal and the Potomac River basin. The Association works with the National Park Service in its efforts to preserve and promote the 184 -mile towpath.

Permission is granted to use this copyrighted material solely for non-commercial, instructional, personal, or scholarly purposes. In reproducing any or all of this publication, please attribute to the "C\&O Canal Association, a nonprofit organization based in Glen Echo, Maryland."

PREFACE TO THE ELECTRONIC EDITION, 2014

Over the past 15 years William Davies' uncompleted manuscript has established itself as an invaluable resource for students of the C\&O Canal. The document benefits from Davies' experience as an engineer, knowledge of geology, and extensive archival research.

In 1954 Davies was part of the famous hike led by Justice William O. Douglas over the entire length of the canal. That hike dissuaded the editors of the Washington Post from their support of the plan to convert the towpath into a highway. Increased public awareness of the canal's scenic beauty and historic significance set in motion a sequence of events that culminated in the creation of the C\&O Canal National Historical Park January 8, 1971.

The C\&O Canal Association could think of no better way to mark the $60^{\text {th }}$ anniversary of the Douglas Hike than to make Davies' seminal work available to a wider audience.

Friends trace the start of Davies' love affair with the canal to the 1954 Douglas Hike. When the editors of the Washington Post accepted Douglas' challenge to hike the canal, he recruited various experts to join the hike. Justice Douglas thought these experts could bolster the case for preservation. Davies became part of the hike when Justice Douglas approached the United States Geological Survey in search of a geologist.

Davies was a charter member of the C\&O Canal Association and its president in 1962. Even though his career took him around the world, Davies continued to serve as an officer or director of the association from 1955 until his death in 1990.

This unfinished manuscript is product of Davies' love of the canal and his love of learning. After Davies died, his friend Bruce Wood wrote, "Because he did not cease researching, he did not cease writing. I do not know how large the book is today, but I knew it would never be finished in his lifetime because of his love for learning and for passing that learning on to others."

PREFACE

William E. Davies began collecting and organizing data for this manuscript on the engineering geology of the Chesapeake and Ohio Canal late in the 1940s. He was still pursuing relevant data on the canal when he died on June 27, 1990. For Bill, the consummate engineering geologist, the effort was both a labor of love and an intellectual challenge.

The manuscript provides an excellent example of how a capable engineering geologist does field work. It is also a fascinating historical document. The material is reproduced from his draft without changes but with these additions:

1. Consecutive page numbers have been added at the bottom of each page; they are enclosed in parentheses to differentiate them from Bill's earlier pagination.
2. The report has been divided into sections relating to consecutive sections of the canal; they correspond to the informal organization of his notes, which (along with the page numbers) make it easier to find particular sections.
3. Bill drew the frontispiece and Figure 1, which show the geologic/geographic setting of the canal.
4. Bill's wife, Geraldine H. Davies, made available diagrams of an aqueduct, a culvert, and a lock from Bill's large collection.
5. Bill wrote the introduction, which was previously printed in Field Trip Guidebook T206, published for the 28th International Geological Congress.

The memorial to Bill (Appendix A) was written by a longtime colleague, Daniel B. Krinsley of the U.S. Geological Survey. The Geological Society of America originally published this memorial, and graciously allowed its inclusion in this work. Dr. Krinsley has added five vignettes that reflect Bill's character.

Appendix B is a piece that Bill wrote to illustrate some of the trials and tribulations faced by those who built the canal.

Appendix C is a selected bibliography of William E. Davies prepared by Dr. Krinsley. It was published by the Geological Society of America.

The research supporting this manuscript constitutes 38 linear feet of well-organized materiais, including copies of original sources, field notes, sketches, maps, drawings, and photographs concerning the canal. This collection will be deposited in the Western Maryland Room of the Washington County Free Library in Hagerstown, Maryland, and will be available to scholars and others interested in the C\&O Canal.

In compiling and arranging this report, I have had considerable assistance. The effort would not have been possible without the help of Gerry Davies, who gave Bill the same type of wholehearted support during his field work. Her initials are found on many field note pages from source materials.

Amber Edmiston inserted the page numbers and clarified some of Bill's manuscript insertions that were barely legible.

Dedra L. Davis and Veronica Santos-Mazzuchi provided typing support. Scott Schramm helped with layout and Stephanie S. Babcock assisted with book design and paper selection.

The introduction is printed with permission of the American Geophysical Union. The C\&O Canal Association (as reflected by longtime member and former president Carl Linden) retained an interest over the years in having Bill's work made available.

Blair T. Bower, P.E., was a continual help and prod to achieving the final product.

TABLE OF CONTENTS

Page
Frontispiece ii
Preface v
Introduction ix
Washington Branch (1)
Georgetown to Little Falls, Md. (4)
Little Falls, Md. to Great Falls, Md.(52)
Great Falls, Md. to Seneca, Md.(91)
Seneca, Md. to Whites Ferry, Md.(112)
Whites Ferry, Md. to Point of Rocks, Md.(133)
Point of Rocks, Md. to Harpers Ferry, W.Va.(159)
Harpers Ferry, W.Va. to Shepherdstown, W.Va. (197)
Shepherdstown, W.Va. to Dam No. 4(243)
Dam No. 4 to Conococheague Aqueduct(264)
Conococheague Aqueduct to Fort Frederick, Md.(303)
Fort Frederick, Md. to Great Tonoloway Aqueduct (367)
Great Tonoloway Creek Aqueduct to Dam No. 6(392)
Dam No. 6 to Fifteen Mile Creek Aqueduct (423)
Fifteen Mile Creek Aqueduct to Paw Paw Tunnel (455)
Paw Paw Tunnel to Town Creek Aqueduct (502)
Town Creek Aqueduct to Oldtown, Md.(528)
Oldtown, Md. to Spring Gap, Md.(544)
Spring Gap, Md. to Evitts Creek Aqueduct (564)
Evitts Creek Aqueduct to Cumberland, MD(591)

Appendix B An Event in the Legal History of the Chesapeake and Ohio Canal Company.

Appendix C Selected Bibliography of William E. Davies

INTRODUCTION

The Chesapeake and Ohio Canal was one of the more ambitious transportation projects of the early $19^{\text {th }}$ century. As originally planned, it was to extend from Georgetown, D.C. to Pittsburgh, Pennsylvania by way of the Potomac, Youghiogheny, and Monongahela valleys with a summit tunnel over four miles long.

The canal was begun at the west end of the Georgetown level on 4 July 1828 and after 13 years of hard financial and physical labor construction came to a halt at Dam No. 6, 134 miles from Washington, D.C. After lying fallow above Dam No. 6 for eight years, construction resumed and the canal reached Cumberland in 1850, eight years after its rival, the Baltimore and Ohio Rail Road, had gained entry to the same point. All hopes of reaching Pittsburgh disappeared even though a tunnel had been constructed to connect the C \& O Canal with the Pennsylvania Canal.

The C \& O Canal assumed the role of hauling coal to the nation's capital for the rest of its life. The canal did this job well but its original cost of at least $\$ 11,000,000$ saddled it with a huge debt that never permitted a profitable operation. The canal held its own against the railroad until the middle 1870's when the efficiency of air brakes and larger locomotives permitted rates so low on the railroad that the canal could not compete.

In default of interest on a major bond issue, the canal accepted bankruptcy after the disastrous flood of June 1889. Normally the canal should have died then. However, its old rival, the B \& O Railroad, saw that the canal could be used by the then growing and competing Western Maryland Railroad to reach Cumberland and Washington and open new rivalry in transporting coal. After litigation the canal fell under the influence of the B \& O and was restored as an operating waterway in 1891.

The canal, operated by trustees, continued to haul coal until the 1924 floods caused serious damage. With little coal to haul, and with the Western Maryland Railroad under B \& O control, there was little reason to continue operation. To retain the charter and franchise, the canal was held to be in a state to accept traffic if adequate tonnage was offered. None was offered and the canal continued to decay slowly. In 1938 the B \& O Railroad found it hard pressed to make payments on a Reconstruction Finance Corporation loan and the canal was offered for sale to the U.S. government. The canal was purchased by the U.S. Department of Interior in 1938 for $\$ 2,000,000$ with the proceeds going to ease the B \& O's plight. The canal was turned over to the National Park Service for use as a recreation area and was restored between Georgetown and Seneca, Md. The canal was made a national historical park in 1971. By 1988 it was among the top 10 national parks in attendance with about $4,000,000$ visitor days in that year.

The canal crosses four major geological provinces (see frontispiece). From Washington to Point of Rocks the canal is in the Piedmont Province, a low rolling terrane of Precambrian to Lower Paleozoic metamorphic rocks. The western part of the Piedmont contains rocks of Triassic age, mainly red sandstone, shale and conglomerate intruded by diabase dikes and sills. The Blue Ridge province between Point of Rocks and Harpers Ferry consists of three ridges formed of Precambrian gneiss and metabasalt and lower Cambrian quartzite and phyllite. West of the Blue Ridge is the Great Valley province, a lowland up to 26 miles (41.8 km) wide in the Potomac River area. West of the Great Valley is the Valley and Ridge province consisting of folded Paleozoic rocks, (see Figure 1: Geologic Map of the Potomac Appalachians).

The Allegheny Plateau lies just west of the Cumberland terminus of the canal. It is an area of high rolling uplands on relatively horizontal Carboniferous (Mississippian and Pennsylvanian) and Permian shale, sandstone and coal formations.

FIGURE 1 Geologic Map of the Potomac Appalachians. KT Cretaceous and Tertiary, T Triassic, P Permian, P Pennsylvanian, M Mississippian, D Devonian, S Silurian, O Ordovician, C Cambrian, wq Cambrian or Precambrian Weverton and Harpers Formations. Metamorphic and igneous rocks: gm Georgetown igneous complex, sb Skylesville Formation, ws Peters Creek (Wissahickon) Formation, mb Catoctin metabasalt, gn granite gneiss. Compiled from state geologic maps: Maryland 1:250,000 1968, West Virginia 1:250,000 1968, Pennsylvania 1:250,000 1980, Virginia 1:500,000 1963. For details on formations, see Table 1.

Potomac Valley history begins shortly after the founding of Jamestown, Virginia in 1609 when John Smith explored the river to Little Falls, 3 miles (4.8 km) west of the present site of Washington. By 1736, the Potomac River had been explored to its headspring at the Fairfax Stone, and by 1750 traders and a few settlers were scattered throughout most of the valley. Many had migrated via the Great Valley from Pennsylvania.

A fort was built at Cumberland in 1754-55 that was the base for General Braddock's illfated military venture against Fort Duquense (now Pittsburgh). Cumberland was organized as a town in 1786 following the establishment of Shepherdstown, Williamsport and Hancock. Early settlers were mainly Germans but construction of the railroad and canal brought in many Irish, Dutch, English and Welsh immigrants. Industry in the Potomac Valley was generally light except in Cumberland. In that city steel mills, synthetic fiber plants and tire factories grew, prospered and then closed. Coal mining at the head of the valley lasted a century and a half until the seams were mined out in the 1970s. Publishing, farming, cattle raising, fruit growing and recreation are now important segments of the economy. Close to Washington, the valley is the bedroom for many employees of the federal government and the private technical companies that support federal activities.

TABLE 1 General stratigraphic column for the Potomac Appalachians (Thickness shown is the maximum for the area)

Triassic - Manassas (New Oxford) Formation, red sandstone and shale, limestone conglomerate; diabase sills and dikes, $4,500 \mathrm{ft}(1,372 \mathrm{~m})$.

Permian - Dunkard Group, shale, siltstone and sandstone, lenticular limestone, 200 ft (61 m).
Pennsylvanian - Monongahela Formation, claystone, sandstone and coal beds, 375 ft (114 m). Conemaugh Formation, claystone, shale, sandstone and thick coal beds, $900 \mathrm{ft}(275 \mathrm{~m})$. Allegheny Formation, claystone, siltstone, sandstone and coal beds, $325 \mathrm{ft}(100 \mathrm{~m})$. Pottsville Formation, conglomerate, sandstone, claystone, some coal beds, 60 ft (18 m).

Mississippian - Mauch Chunk Formation, red and green shale, and sandstone, 800 ft (244 m). Greenbrier Formation, argillaceous to arenaceous limestone, $300 \mathrm{ft}(91 \mathrm{~m})$. Purslane Sandstone, white, coarse-grained sandstone and conglomerate, $250 \mathrm{ft}(76 \mathrm{~m})$. Rockwell Formation, arkosic sandstone, shale, and thin coal beds $1,300 \mathrm{ft}(396 \mathrm{~m})$.

Devonian - Hampshire (Catskill) Formation, red shale, and sandstone, $3,800 \mathrm{ft}(1,158 \mathrm{~m})$. Chemung (Foreknobs Formation), sandstone, conglomerate with red beds, $1,900 \mathrm{ft}(580 \mathrm{~m})$. Brallier Formation, black, fine-grained sandstone and gray shale, $2,200 \mathrm{ft}(660 \mathrm{~m})$. Harrell Shale, dark gray to black shale, 278 $\mathrm{ft}(85 \mathrm{~m})$. Mahantango Formation, thin-bedded, olive gray shale, some sandstone, $1,230 \mathrm{ft}(375 \mathrm{~m})$. Marcellus Formation, gray to black shale, $575 \mathrm{ft}(175 \mathrm{~m})$. Needmore Formation, black, carbonaceous shale, $490 \mathrm{ft}(150 \mathrm{~m})$. Ridgeley Sandstone, calcareous, quartzitic sandstone, $160 \mathrm{ft}(49 \mathrm{~m})$. Shriver Chert, dark gray to black chert and cherty shale, $14 \mathrm{ft}(4 \mathrm{~m})$.

Devonian/Silurian - Helderberg Formation, limestone, shale and chert, $200 \mathrm{ft}(61 \mathrm{~m})$. Keyser Limestone, dark gray, nodular limestone, $300 \mathrm{ft}(91 \mathrm{~m})$.

Silurian - Tonoloway Limestone, gray, laminated limestone, 600 ft (183 m).
Bloomsburg Formation - red siltstone, shale and argillaceous limestone, 35 ft (10 m). Rochester Shale, calcareous shale and argillaceous limestone, 250 ft .

Ordovician - Juniata Formation, red siltstone, shale and sandstone, $500 \mathrm{ft}(152 \mathrm{~m})$. Martinsburg Formation, dark gray to black siltstone and shale, $2,500 \mathrm{ft}$ (762 M). Chambersberg Formation.

Ordovician/Cambrian - Conococheague Limestone, dark blue, argillaceous and siliceous limestone, 1,900 $\mathrm{ft}(580 \mathrm{~m})$.

Cambrian - Elbrook Limestone, laminated, argillaceous limestone, 2000 ft (610 m)
Weverton and Loudon Formations, gray quartzite and conglomerate, $425 \mathrm{ft}(130 \mathrm{~m})$.
Cambrian/Precambrian - Harper's Ferry, siliceous siltstone, 2,000 ft (610 m). Weverton and Loudon Formations, gray quartzite and conglomerate, $425 \mathrm{ft}(130 \mathrm{~m})$.

Metamorphic and igneous rocks of the Piedmont:
Lower Paleozoic - Sykesville Formation, schist with blocks of Peters Creek Formation and other rocks. Georgetown igneous complex, gabbro, amphibolite, quartz diorite.

Precambrian - Catoctin metabasalt and metarhyolite, epidote rich, some tuffaceous phyllite. Swift Run Formation, sericitic quartzite and phyllite. Peters Creek Formation, phyllite, schist, mica gneiss, metagraywacke. Biotite granitic gneiss and grandioritic gneiss.

STRUCTURES OF THE CANAL

Most of the canal structures were made of stone or earth. As far as possible the canal was designed to permit excavation in soil and weak shale. The architecture of the canal represents unique uses of otherwise common structures. These include:

Prism - The water channel of the canal was generally 50 to 60 feet ($15-18 \mathrm{~m}$) wide at the top and 6 feet (2 m) deep. Embankments were made from materials excavated from the prism except in several areas from Hancock to Pawpaw where the material was obtained in West Virginia and transported across the river on temporary bridges.

Dams -Dams were used to raise the river to the water level of the canal so that water could be fed into the canal. Initially most of the dams were timber cribs filled with gravel and sheathed with planks. During and after the Civil War, Dam Nos. 4 and 5 were rebuilt as masonry structures. Dam No. 8, at Cumberland, was originally a masonry structure. Dam Nos. 1 and 2 were rubble, brush and other debris placed in the river. All dams had bedrock foundations. Dam No. 7, planned near Pawpaw, was not constructed.

Locks - The lift locks on the canal were ordinary Pound locks with 100 feet (30.5 m) long chambers for boats (Figure 2). The chambers were 15 feet (4.6 m) wide. Lift ranged from 3 to 10 feet ($1-3 \mathrm{~m}$). Locks were built of dressed stone or rubble backing with timber faces. Lock gates were of the swing type; head gates of several locks were converted to drop gates in the 1870s. In the early 1880s, 14 locks were lengthened to 200 feet (61 m) by timber extensions. Footings for the locks on soil foundations (Figure 3) consisted of 12-inch (30 cm) timbers, a foot (30 cm) apart, placed longitudinally along the walls of the structure. These were overlain by transverse timbers. The timbers were covered with 3-inch (7.5 cm) planks and stonework placed upon them. All the timbers were laid so as to be wet permanently.

FIGURE 2 Plan of a Lock.

FIGURE 3 Cross Section of a Lock.

Culverts and Aqueducts - It was the practice of the canal engineers to keep streams from draining into the canal. The canal was carried across streams by single arch, masonry culverts. Aqueducts crossed larger streams. The arch in the barrel of most culverts was rubble bonded by cement. Faces of the culverts and aqueducts were dressed masonry. Earthen embankments bound the prism over the culverts. Footings for culverts and aqueducts were similar to those for locks. Stone for most structures was obtained locally except for a few locks and culverts in the Georgetown area where Aquia Creek freestone, quarried 35 miles (56 km) south of Washington, was used.

FIGURE 4 Profile of a Culvert or Aqueduct. A-a' skewback, b coping, c parapet, d spandrels, e abutment, k keystone, p pavement, pk 3 inch (7.5 cm) plans, r ringstones (archstones), wt water table or belt.

Wastes - These structures were used to control water levels in the prism. Surges of water from emptying of locks were discharged through the wastes. The wastes were used to maintain a current of 2 miles (3.2 km) per hour downstream to aid loaded boats going down from Cumberland. They also were used to empty the canal for repairs. Originally, the wastes were overfall spillways. These were replaced by standard, 3-gate weirs with insert boards and wicket gates.

Stop Gates, Stop Locks and Guard Locks - These structures were placed in the canal to divert floodwater and to cut off flow in the prism if a breach occurred in an embankment. Swing gates, drop gates and insert timbers were used in these structures.

Towing Path - The towing path was on the riverside of the canal except for a short stretch in Georgetown. The path was 12 feet (3.7 m) wide and had a natural surface until the 1870s when crushed stone was added. Canal terminology cited the embankment bounding the prism opposite the towing path as the berm.

Canal Boats were about 90 feet (27.5 m) long, 14.5 feet (4.4 m) wide and had a draught of less than 6 feet (1.8 m). The largest boats carried about 100 tons of cargo, mainly coal. The boats were privately owned until 1889. Each boat was operated as a family affair paying toll to the Canal Company and collecting freight charges from the shipper. After 1889, a contract was let by the Canal Company with one company to supply boats and operate them. Horses pulled the boats until an epidemic struck the teams. Afterwards teams of two mules supplied the motive power in relays with another team housed on board the boat. Locks required 10 minutes for passage. A trip from Cumberland to Washington took a week.

What lies along the canal? At present it is one of the few $19^{\text {th }}$ century American canals that are nearly intact; only the last mile at Cumberland has been altered by flood control work. The canal is a geological laboratory extending 184.5 miles (294 km) across the Piedmont, Blue Ridge, Great Valley and the folded Valley and Ridge provinces. The canal is a display of early engineering. Its 182 culverts, 11 aqueducts, six dams and 74 locks are fine examples of $19^{\text {th }}$ Century's engineering practices.

William E. Davies
15 July 1989

HASHINGTON BRANCH

Until the late 1870's the eastern terminus of the C \& 0 Canal was its junction with the Washington City Canal at 17th St. and Constitution Ave.. The Hashington City Canal connecting the Potomac and the

Anacostia Rivers was constructed between 1791 and 1815. The canal was
used very little and by the time of the Civil War it was a polluted,
silt-filled ditch that was an eyesore along the Mall west of the Capi-
tol. Between 1874 and 1886 it was roojed over to form part of the

Tiber Creek Sewer west of the Capitol and filled in elsewhere.

The Washington Branch of the C \& Canal was 1.3 miles long and
much of it was constructed on embankments on the tidal flats along the
east bank of the Potomac River. The northern end of the branch canal
\therefore connected with the main canal at the Rock Creek Basin.

West of 17th St., the Washington Branch trended slightly north of

Constitution Ave., skirting the base of the low. hill west of 23rd St. in the area now occupied by the approaches to the Roosevelt Bridge. Curving to the north, it followed roughly along the route of the pre-z- sent Rock Creek Parkway, past the Kennedy Center, to a junction with the C \& O Canal at the bend in the Rock Creek Basin, 100 feet from the
dam and tidelock. The route is now usurped by Constitution Ave., the approaches to the Roosevelt Bridge, and the Kennedy Center.

At the 17 th $S t$. temminus there was a lock (Lock B) connecting
canal at 17th, 22nd; D_{3} and G Streets and thëre were.aं stop lock at :

27th St. and wharves at 17th and 27th Streets. A culvert passed beneath the canal at 21st St. .

Construction on the branch started in 1832 as part of an agree-
\square
ment for subscription of $\$ 1,000,000$ to the C \& O Canal by the City of Washington. The branch was opened for service in 1834. The C \& 0

Canal Company deferred maintenance on the branch and by 1849 the $=\leq-$
 . The lockhouse on the southwest corner of 17th St. and Constitution Ave., built in 1837, is the only structure associated with the branch that is intact. It is $11 / 2$ stories high and is faced with matched rubble and some dressed stone, mainly light gray sandstone, garnet schist, and gabbro (dark igneous rock). The lentils over the doors and windows are cut Aquia Sandstone. The house is now used for public lavatories.

Map pg. size, draft at $2 X$.

$$
\begin{aligned}
& \text { Georgetown (in early tobionice, part;, Rock Creek navigable } \\
& \text { to pSt. } \\
& \text { water st (kst.) = docking area. }
\end{aligned}
$$

GEORGETOWN TO SENECA

Distances are measured from the tidelock and are based on Chesa-

MAP OF GBORGETOWN, Tidelock to Aqueduct Bridge; use Hopkins Atlas as a -base with reduction; detail from p 7 Georgetown Waterfront and map of 1851.
lock was built of Aqua freestone with granite backing but the chamber
now consists of granite, garnet schist, some Seneca red sandstone

Washington Gas Light Coin chartered 8 gull 1848 . Sengiton Stasteght Co, a sutsidiain; conthuction begun 1848. crossed the tidelock. Ruins of an old gravity dam are on the south side of the tidelock. The first dam completed in 1831 was a low gravity + dam with a waste weir (Waste no. I). The present dam was built in 1869 was 100
after the Washington Branch Canal was abandoned. It is ft. long consisting of a concrete wall on the north extending 25 feet to 6
timber frames with paddle gates. At the south end there was a gravity
soft. long
dam but this was partially removed in the 1930^{\prime} 's to increase flow in

Rock Creek for the abatement of pollution from sewage. All but $1 / 4$ of north end of dam washed out.

The MOLE, built 1829 - 31, extends west from the tidelock 1080 ft . along the Potomac River. The lower end is occupied now by the Harry
T. Thompson Boat Center and the western part is a lumber yard. When the canal was in operation, large timber cranes with horizontal booms extending over the river, occupied most off the mole and were used to unload coal barges for transshipment into schooners. Washington Harbour - condominiums offien 1983-86.

A BASIN along Rock Creek was built in 1831 as an unloading area

$$
\log \text { piling }-
$$

for canal boats and some ${ }_{A}$ timber crib walls can be seen on the banks of
the creek. The West Station of the Washington Gas Light Company, erected 1858, dismantled 1949, was on the east side of the basin below K Street. Before the canal was constructed, K Street crossed Rock Creek on a 3-arched bridge, 135 ft . long, built in 1792 (Enery 1938). This was replaced by a timber bridge upon construction of canal. This bridge was raised and rebuilt in 1836 and was replaced by an iron truss in 1869. A steel through plate girder span was built in 1906-07 and was in service until 1940 when the present K street $\frac{b}{\text { Bridge was built. This span was }}$ modified in 1948-49 and 1963-64 in connection with development of Whitehurst Freeway. A crossover bridge for the towing path was beneath the K Street ${ }^{\text {Bridge in the }} 1870^{\prime}$ s. the Toieast, between branches of freeway, are 4 old limekilns operated from 1833 to 1908 by Eli Wade and William H. Godney (Aetna Lime Kilns 1864-1908); Iimestone used in kilnsA
brought by canal from quarries in the Triassic Iimestone -
conglomerate in the Monocacy area and from quarries in West

Virginia near mouth of Antietam Creek.

Plan of basin, mole, tide lock and dam- 8"x10" drawing redfuce to $3^{\prime \prime} \mathrm{x}^{\prime \prime}$ approximately.

2 paddles in each gate. Notch for store gate at head of lock.
$=5 \mathrm{in}$. wide $\times 4 \mathrm{im}$. deep of or drop boards
north of the mouth of Rock Creek and Lock 1 is 150 ft . west
of Rock Creek. The lock has a lift of $8 \mathrm{ft} . /$ It was con-
structed 1828-30 but it was taken down and rebuilt in 1830
after a defect was found in side wall. The chamber and
coping are Aquia freestone with blocks of schist and bricks
used in repairs; some light gray, coarse-grained granite is Pres
in coping on north side at lower gate recess. The wing . in
wall on ${ }^{\text {n }}$ north side of the canal from Rock Creek to the lock
contains Seneca red sandstone, Aquia freestone, schist and

brick. The curving wall on"south is built of schist.

Canal Company records indicate a contract for a lockhouse
at Lock 1 was made in 1831, but there is no indication of
its construction. Shanty an south side, head of lock
Towing path Lock 1 to $29^{m}=5++$ to Rock Creation hush.

Towpath, Lock l - Lock 3 brick.

Between the lock and Rock Creek, on the towing path, is a large boulder of schist on which has been placed the National Historical Marker for the canal. [The-Washingten New brick building -
Gas-IIght Company buIlding, on north side-of towing path ing
faced with buff gray, medium-grained, pebbly Aquia-Sand-
stone (freestone); quartz -grains are subargular and rounded pebbles with diameters upito $2 \frac{1}{2}$ inches are conspicuous.]

new on the north side of the canal at Lock l. The ${ }_{A}$ building is on the site of an early plant of George, theron 1887
town Gas Company. [atin:1928] A wall of rubble and mortar, topped with cut red sandstone on the north side of the canal from Lock l to lock 2 .

built 1886. The chamber and coping are mainly Aquila Sandupper wing, south side has concrete facing
stone; gabbro, schist and brick were used in repair. The

Aquila Sandstone in the west wing wall is deeply weathered
the Aquila stone south side,
and worm and much of in the east wall, has been replaced
by concrete. The 29 th $S t$. (Greene St.) bridge over the

GT bridges preansfined tran NPS to DC $\mathrm{m} / 941$
1831. It was rebuilt in 1866-67 as an iron span and the
 with part mortar. Top of wall is cur red 55 .
present reinforced concrete slab bridge was built in 1929.

An old iron railing, with 1×42-inch round rod balusters
and $13 / 8 \times 42$-inch round posts, is on the southwest wing.

The towing path switched from the south to the north side
of the canal at this point and the bridge was used to cross
the canal. An incline from Lock 1 to the level of the
bridge, used in the crossover, is on the south side of
canal. The sloping wall on the north bank, east of the
 couriced rubble, brick wall, morn on roup oath side (work).
lock, is dressed Seneca red sandstone at the top and coursed Bet ween Locks $2=3$ the wallow the south is concrobe, dry coursed ruble some brick. On the nor th the axil the wall is of simitar material with mortar. rubble of gabbro and schist below. 1 Canal Company records
indicate that a lockhouse was built in 1831 between locks $: \quad$ Gasworks formerly on north side of canal between Green a Winhengtan streaks. 2 and 3 but no evidence of such a house is now visible.

LIFT LOCK 38 ft . lift, constructed 1828-31. The
is
chamber^coarse-grained granite and Aquia Sandstone with a
in upper chamber.
28 few blocks of schist and gabbro; the granite is dominantly
${ }^{25}$ quartz and feldspar with few daric minerals; Aquia Sandstone 2:
is buff colored in the chamber and dirty gray in the coping.
Towing path from Lock 3 to Lack 4 formerly cobble stans - replaced; a brick Eat and of Lock 3 - bust of Justice Douglas - dedication May 1971? Towpath Lock 1-to Georgetron plaza: brick

oho.
The wing wall in"basin below the lock is Aquia Sandstone
and the wall along the towing path in lower basin is schist
and gabbro with a few blocks of seneca red sandstone. The Each gate in the lock contains two paddle valves.
berm wall is schist and concrete. λ The 30th St. (Washington)
the
St.) bridge, over $\wedge^{\text {tail }}$ of $\mathrm{lock}_{\text {, was }}$ built $1830-31$ as a stone
arch of Aquia Sandstone with a 40 ft . span. It was rebuilt
1866-67 as an iron bridge and^present reinforced concrete span was constructed in 1929. An old railing, similar to

McGee Furry foot 30^{3} ts 5 lame Anencio
Aubrey 174: 6 eos. Masc .--
(Foster 1938)
that on the 29th St. bridge, is on the southwest wing of At the northeast side of the bridge is an old stone sewer in the north wall of the canal. x-remourefor The wings of the bridge, ed are Aquiz ss. T CF.C. Square the bridge. Theredrick warehouse, on the southwest corner

C now 2 restaurant in an office, shopping complex,

was

of the canal at 30 th St. the former Duvall Foundry, now Foundry shops.
constructed about 1856 by William T. Duvall, who operated
it until about 1870. It was used as a veterinary hospital
for Coomules the early 1978's
at end of $19 t h$ Century and from 1954 until 促 Restored 1973-76
owned by the Washington Gas Light Company (USCFA, 68).
The wings $2 t$ the head of hock 3 are built of A qua sandstone, gneiss, red ss, and brick. The wall on the south, between Locks 3 and 4 , is similar material, coursed and laid dry. The towing path wall is similar pat with mortar(some).
$0.53^{\sqrt{2} \text { LET LOCK } 4} 8 \mathrm{ft}$. lift, constructed 1829-31. The
chamber is Seneca red sandstone with cut blocks of schist

South sedeghoch $4=$ mule fusing thanh .
at the west end and granite blocks at lower gate recess. Slots for stop planks at uggen and of loach.
Blocks, 6 ft . long, 3 ft . wide, of Aquila pebbly sandstone
are in the coping and parts of the chamber. Prominent
Pool above Lock 4, revetment on south: coursed dry wall, rubble of schist, gneiss * gabbro on tompotk side wall of same material, some parts wite mortar. grooves, cut by tow ropes are in the coping at upper gate
recess. The wing wall at tail of lock is Seneca red sandand gabbro. The fouling park hall pool ketene Lock 4 are coursed, dry rubble of schist, gneiss

Eoeks-3-and-4-is coursed ruble of Seneca red -sandstone, sehtsearchgabbro. 7 In lieu of a flume or waste weir, excess

Water is fed into and through the lock by a small slot for for fords

waste gate at top of the upper berm lock gate. The Thomas

Jefferson St. bridge is at the tail of the lock; originally
:) a stone arch bridge built 1830-31 of Aquia sandstone, it
was replaced by an iron span in 1866-67. The present reinvaras forced concrete slab bridge^built in 1929. This bridge
has a railing similar to that on 29 th and 30 th St. bridges.
The towing path from Lock 4 west to 31 st St. is paved with
rounded sandstone and quartzite cobbles, up to 6 inches in

Cobbestrus replaced in $198 / \mathrm{urm}$ brick Douglas May 1971.
diameter, obtained from river terrace deposits.
0.60
 constructed 1830-31 as a stone arch bridge of Aqua sandstone and was replaced by 2 iron spans with an iron pier in in the center of the canal in 1866-67. The present 2 span steel girder and reinforced concrete bridge was built in 1929. The guard post on the northwest end of the bridge, 8×8 inches square, cut from schist, has prominent grooves the near^ base. The Towpath Apartments, on northeast side of bridge along side the towing path, were constructed of
brick about 1830 by^Canal Company for use as storage building. They were later used as a tavern and then as a stable for horses or mules working the canal with quarters for the drivers on the second floor. Use as a stable continued until 1941 after the canal ceased operations and conversion to apartments was made in 1941 (USCFA, 68). Canal Square along the towing path west of the bridge was reconstructed
from an old warehouse in 1969-70. Schist rubble facing is in the lower part of the building and brick above. 25 ft . fhe west of the bridge, on the side of 'towing path, are two large subrounded boulders, up to 3 ft . diameter, derived from river terraces. 25 ft . west of the 31 st st. bridge, on the towing path, is a square concrete alcove which 2 phetouring serves as ${ }_{\wedge}^{2}$ stall for mules waiting to be hitched tolbaxge canal bat when it
[that ondoperates on the lower part of the canal. 0.61 WATER INTAKE
0.67 WISCONSIN AVE. (HIGH ST.) BRIDGE) Constructed 1830-32, circular (segmental) stone arch, 54 ft . span, 11 ft. rise with 44 rusticated ringstones and keystone. The ringstones and coping are gray to buff colored, medium grained quarts grained, pebbly Aquia sandstone with pebbles are up to 1 inch in diameter. The ringstones are cut and edges rusticated but they are now deeply weathered. The inner spandrels and parapet are rough-dressed Aquia sandstone. The abutments, 6 tiers (6 ft.$)$ high, are made of cut, rusticated

Aquia sandstone, now deeply weathered to a duil powdery surface. A but tress on the southeast side is also Aquia Sandstone. The wings on the southeast side are coursed rubble of gabbro, schist and brick. Railings on the bridge, have round iron balusters, spaced 6 inches, with 18 or 19 per section between round posts. The center post has 2 iron rods with curled tops rising 3 ft .4 inches above railing; end and corner post are 22 inch square columns of Aquia sandstone with a 2 ft . square cap topped by a metal ball; the post on southeast has been replaced with concrete. The keystone on the east side is inscribed O.H. Dibble, Builder, 1831; the keystone on the west bears
 granodiorite in walls at bridge - some rusted garnels: gnesss?

Two stone plaques are on the east spandrels. They are rectangular, 3 f . . high $\times 4 \mathrm{ft}$. wide, enclosing an oval area of inscriptions; the plaque on north over towing path is dedicated to Andrew Jackson, President of the United

States, and Charles F. Mercer, President Chesapeake and

Ohio Canal Company; other names are not legible. The
plaque on the south is dedicated to Thomas F. Purcell,

Superintending Engineer, F.(?).O. Williams, Assistant do.;

Filbert Rodier, Michael Corcoran, __ Mann, Clement Smith,

Treasurer Chis. \& Ohio C. Co. A rectangular stone 16
inches high by 3 ft . long, on west parapet between the
keystone and the coping is inscribed to John Cox, Mayor of

Georgetown, James Dunlop, Recorder.
near Baltimore. The monument consists of a pedestal, and
column surmounted with a pointed shaft and was originally
erected in 1850 to commemorate completion of canal to
a. Cumberland; the northeast face is inscribed with the names
of the President and Directors of the company: the south-
east face contains names of the Maryland agents the north-
west face has the name of Benjamin Wright, first zhief

Engineer of the company and a citation on the start of the
canal in 1828; the southwest face contains the name of

Charles B. Fisk, Chief Engineer at time of completion of canal. The monument, dismantled in 1900, was stored and forgotten in the basement of the George Hill Paper Company but was found in 1927 when the District of Columbia Paper Company purchased the building. It was erected on the present site by executors of Hill's estate.

Walls along the towing path for 100 ft . on either side of the bridge are gabbro rubble containing prominent clusters of mica a quarter-inch in size and rusty red garnets. The wall is 25 ft . high on east and 15 ft . high on west.

The berm, on south side of canal from Wisconsin Ave. (High St.) to 34 th St. (Frederick St.), was enlarged to 20
ft. width in 1831 to accomodate unloading of barges but
later much of it was occupied by warehouses.
0.68100 ft . west of Wisconsin Ave. bridge, is an out-
crop of dark gray to black, coarse-grained boulder gneiss
(Sykesville Formation) which forms low ledges on south side of canal; 2 sets of joints, $N 10^{\circ} \mathrm{E}$ vertical; $\mathrm{N} 30^{\circ} \mathrm{E}$
dipping 45° to southeast are present.
0.69-0.75 The high wall along the towing path is
skintled, coursed rubble and course ranged blocks of
Smooth face on back, Headers protrude 18 m . along renal - gabbro and gray schist. . The wall is 40 ft . high and 20 ft .
: ${ }^{\epsilon}$ above the towing path is a prominent line of headers spaced

$$
\text { to } 18 \frac{1}{2} \mathrm{~m} \text {. }
$$

$: 10 \mathrm{ft}$. apart and protruding a foot. The old brick wareWeshingthe Qeorgetoren RR, later - stored feed - horses for Georgstrom $R R$: house of Capital Traction is on top of wall and there is a :t- Power house in 1890
similar warehouse across canal. The warehouses are con-. now bridge is DNDTQ at $2 d$ story level, she 1 truss, high was 11.
 netted by a bridge of skeletal Pratt trusses and another = steel girder.
enclosed iron truss. Parts of the building on the north

 sties.
oritury on onith side gcencal opponent high wall : 100 ft . Long, 5-8p.

Building an S.side = $\mathrm{C}_{\text {ana }} \mathrm{l}$ House Now
converts to
Geargetrom Park.
Old brides
removed. New bridge just wert of Wisc. Ave cornets shop firs.
Georgetron RAt bul 1980 -
Brigit: 200 As.
wig Wisconsin Ave. 2 Steel beam deck 8 . Canal House on smith eide high wall $;(1873)$-stored hoses appeared for Old cable bridge reeled Georgetown RR., poon hone in 1890 .
side date back to 1823 when it was used as a tobacco ware-
house. In 1854 it was a stable for a horse drawn omnibus
line. Later it was enlarged for use as a street car repair shop and was used as such until 1963 (USCFA.68). A 14-inch
iron pipe intake for remain as pary of Geurgetren Square.
iron pipe intake for utilizing canal water for power is
 near the east end of the building on the berm (south side).

 $\checkmark 4 f$. rise, 10 位 abotment; stomes: gneiss - schist; operuang out in higtwale.
0.78 A deposit of terrace gravel, 4 ft . thick, overlain
by man-made fill can be seen beneath the floor of building supported on concrete columns adjacent to the towing path.

The gravel contains water-worn cobbles of sandstone and
quartzite up to 4 inches in diameter; thin silt and gravel
beds lie below the upper gravel bed.

truss, crosses the canal to the Wilkin Rogers Milling Co. built 2bout 1877
at Grace St.. A water intake, with iron slat guards, is on
\therefore berm at. the west side of bridge; another intake 40 ft . to
west, has a concrete frame and formerly fed water to the 1
2 flour mill which was built about 1832 by Col. George Brom-
ford. It was destroyed by fire, September 1844 and a
cotton mill was erected on the site 1845-47. This was !
converted to a flour mill in 1866, rebuilt 1883 and continued operations until 1913. It was altered in 1922 by
the Wilkin-Rogers Milling Co. for use as offices. Culvert 13-: 1979-80 : Flour Mill Condoniniums, new brick building to west.
:: A, built 1830, a wooden conduit, $2 \frac{1}{2}$ ft. diameter, 122 ft.
long, passes under the canal just west of bridge. It
$\therefore \quad$ Star-botts (9) prominent in building
:A formerly connected with sewers draining areas in vicinity
of 36 th and N. Sts. and Wisconsin Ave. Rubble wall for 50 ft. to Marker Houre, promarily schustose "gabbro" - matcher - along prism sider of troupath
$\xrightarrow{\stackrel{\text { OLD MARKET HOUSE }}{\rightarrow}}$ Between Potomac St. and Cedar Alley
The first market was built in 1795 but construction of the
canal cut the market site in two and bridges were construct-
ed to link the two parts. The present Market House building
was built in 1865 and now is used for other commercial
purposes. The dry wall along the towing path extending to
\qquad

33 rd St. bridge is built of Seneca red sandstone, Aquia sandstone and gabbro. It formerly supported the market building. Waste no. 2, a 2-gate overfall built 1833 was formerly in this area and discharged under a warehouse to a
ravine connecting with the river.

0.86

 33rd. St. (MARKET ST., DUCK LANE) BRIDGE

This curved chord Parker open (pony) truss was built about
1900. The first bridge at this point was a timber truss : built in 1831, the completion of which was delayed because :
of abutment troubles, $\operatorname{Erg}_{\underset{Z}{ }}^{A_{n}}$ iron and timber truss replaced :6 the timber bridge in 1866-67. The dry wall west of the
bridge is mainly gabbro and some schist cut in blocks up to

A low ledge of dark gray, course grained
homblende is on the side of the towing path. Prominent joint planes strike $N 10^{\circ} \mathrm{E}$, dipping $65^{\circ} \mathrm{ESE} ; \mathrm{N} 32^{\circ} \mathrm{E}$ dipping 80° SE; and $N 74^{\circ} \mathrm{W}$ dipping 80° SSW. Blasting in this area during construction of the canal hurled boulders weighing up to a half a ton into Georgetown, smashing parts of a house and killing a horse. A turning basin, now filled, was Rebuilt wall m 1980's com bream slabs of 7-Lock stones. formerly on the south side of canal, east of 34 th St.

 bridge. $4 f$, high outer op attase of rubble wall; dark gray to black, finegrained gabbro; biotite visible, small quant y pebbles present. Ruble wall mocencity y
 0.95 (0.95)

TOWING PATH CROSSOVER A timber bridge was built across the it canal here in 1830 and was replaced by a timber and iron bridge in 1866-67. The towing path until 1856 was on the
is south side of the canal from Greene St. to Frederick St..

In order to facilitate unloading from barges to river boats

23 by way of coal trestles, of which there were 7 or more in
use between Aqueduct Bridge and 33rd St. from 1857 to 1887, $2:$
the towing patith was shifted to the north side of the canal
in 1856 and a timber crossover bridge built opposite 37 th St.. The bridge was reached by a short incline from the towing path west of the site of the old Aqueduct Bridge. The incline still exists connecting with M St. and it was used in conjunction with the crossover bridge at 37 th 5 . The crossover bridge was used for only a few years and removed about 1861. After 1858 the towing path followed the incline to Canal Rd. and west along Canal Rd. for 0.58 miles to Foundry Branch culvert, which was used to cross under the canal to an incline on the southeast side of the culvert. The incline gave access to the towing path on the south bank of the canal. This method of operation continued until the closing of the canal in 1924 and was used from the restoration of the canal in 1939 until september, 1954 when the 34 th st. crossover bridge was restored. After 1858, the south bank of the canal from the culvert east was used as a holding basin for boatis leaving or
arriving at Georgetown. The present bridge at 34 th st . is
a Pratt bowstring open (pony) steel truss. The parts form-
ing the superstructure originally were in the bridge that
spanned the canal at 36 th $S t$. but were removed when the

Whitehurst Freeway was constructed in 1948-49. From 34th

St. west to Cumberland, the towing path is on the river courséárubble
side of the canal. The \int wall along the towing path at
34 th St. is gray schist, containing quartz lenses up to a an outre 4 fr. high sis at true of wall $=$ dank gray then, fore grand gather, half inch thick, gabbro with salt and pepper texture, some

Seneca red sandstone, and several rounded, worm blocks of

Aquila sandstone.
Formerly old basin on towing path side to east of 34 kk Sr. Brace.
ie Wall of schist, grues, dark gray t Hack; kane gater. Aqua ss., wall relaid 1978.
 :- Sections stent, 2 areas tetwen Friduies Sro Wrsconion an Rave clumped.

Engineers, U.S. Army, cost $\$ 2,500,000$, opened January 17 ,
1923. The bridge originally consisted of 7 reinforced,
$: 8 \quad$ ribbed arch with open spandrels containing 68,000 cubic yards of concrete. It was 1,791 feet long and up to 72 ft . 24
high above river level. The center span is 208 ft. long
with two flanking spans on each side of the center span, each 204 ft . long. These spans are flanked by spans 187 ft
long and on the north a span over K St. is 152 ft . long.

The approach span over the canal is 85 ft . long and the
span near the Virginia shore is 152 ft . long. An eighth
span on the Virginia approach was added in 1939. The
bridge deck was rebuilt and widened to six lanes in 1957. 8 arches on Key Bridge
A^{2} gate, concrete culvert under the towing path, on
the east side of the bridge, formerly served as a waste
 towing path - overgrown by tree. Between ky Bridge - Ned power house
Stows revetment for 100 pr . wist of Key Bridge along turpeth, them 100 f .g brickwall on pirceride of towpath.
1.04 under the towing path, formerly cari) Coursed rubble wall on berm of schist and gabbro between Kay Bridge . Whitehurst Bridge

brick building on the river side of the canal.
a- Built by ice company; sold to lastingly Firn C_{0}, built in sandy $20^{\circ} \mathrm{th}$ centring. J
$\therefore 1.05$ WHITEHURST FREEWAY BRIDGES \quad Two bridges, deck
$2:$ girders encased in concrete, were constructed 1948-49. 1959??

Stan th k St between Whitchurst bridge and Aqueduct bridge
Small park with benchice 2^{4} end of aqueduct it Br . Stairs to MSt between Whikehurst bridge.
1.06 AQUEDUCT BRIDGE Constructed 1833-43, opened

July 4, 1843. This structure carried the Alexandria Canal
(chartered 1830) across the Potomac River. The original
superstructure of the aqueduct was 9 timber queen-post
spans with diagonal supports below the spans at each pier.

Each span was 114 ft . long, 28 ft . wide, containing a canal
trunk 17 ft . wide and 9 ft . deep with a towing path 5 ft . :
wide. The aqueduct was $1,100 \mathrm{ft}$. long and had a narrow :a carriage-way above the canal trunk. The aqueduct cost
:- constructed 1833-41, were gneiss quarried from the banks $: s$ of the Potomac upstream from the aqueduct. The icebreakers
${ }_{23}$ ft. below the water and rose 30 ft . above the water. The
$\$ 575,381$ of which $\$ 50,000$ was for the wooden superstructure It was opened to traffic July 4,1843. original plan of the aqueduct called for 12 stone arches,
each with 100 ft . span and 25 ft . rise. 3 spans were later
eliminated by a 350 ft . causeway on the Virginia side.

Shorter timber spans, however, were used in order to cut
costs and speed construction. The northern abutment, on in 1839-1841
the D.C. side of the river was constructed and owned by the

C \& 0 Canal. It consists of 2 stone arch with ringstones,

spandrels, parapets and coping of cut granite, now deeply
weathered and rounded. The south arch is elliptical with
a 40 ft . span, 10 ft . rise, 24 ringstones and a keystone.
\therefore The north arch was rebuilt by the Washington and Western
${ }^{15-}$ Maryland RR (B\&O) in 1906-07 to obtain greater clearance ed. scabble and course rubble of gabbro and gneiss quarried

Alexandria Canal ceased operations in 1888. The super-
structure was replaced with 2 iron. Pratt through trusses,
side by side, 164 ft . long, over the C \& O Canal, a 127 ft.
iron trestle on the north abutment and 9 iron Pratt deck trusses, each 114 ft . long over the river. The total.
length of this bridge was $1,313 \mathrm{ft}$. It had a roadway 24
ft. wide with two 6 ft . sidewalks and the deck was 66 ft . 0-
above the river. The bridge was opened April 11, 1888.
Electric railway tracks were placed on the west side of the to bring V_{2} railways ink to Georgetronn. Street cars from fcorystran in 1922
west side of the bridge in 1902. The bridge was closed on
:- January 17, 1924 with the opening of Key Bridge but the iron
z. southern-most pier were removed in 1962 and the rubble
placed in Anacostia Park for foundations of a sea wall.

The iron railing remaining on the northern abutment is

25- of two types: heavy, gothic lancet, fastened to the edge of
the stonework is from the pre－1866 aqueduct；riveted curving straps of iron are from the 1888 bridge．

Sketch of Aqueduct bridge -3 profiles on 8×14 1843，1867，1888－
source Gtn．Waterfront and Rec．Col．H．Soc．＋Congr． Doc．

Sketch of railing types－draft at $4^{\prime \prime} \times 8^{\prime \prime}$ for reproduction at $2^{\prime \prime} \times 4^{\prime \prime}$ ．

Before construction of the Aqueduct Bridge，transporta－ tion across the river at Georgetown was by Mason＇s Ferry operating from near the foot of 34 th St．to Analostan
to the Virginia shore. The ferry began operations about
: シー
1720 and continued until 1867 (Spratt 1967).

From 1934 tò 1948 an iron pony（open）Warren truss crossed the C \＆ 0 Canal from Canal Road at 36 th $S t$ ．connect－ ミー－
ing with the northern abutment of the Aqueduct Bridge．This truss was removed when the Whitehurst Freeway was built and 25
\therefore used in rebuilding the crossover bridge at 34 th St．．A
concrete slab for the base of the abutment remains on towpath. opposite the end of the Aquadact Briege.
1.04 CULVERT B COLLEGE RUN Constructed 1830-31. This
was a cylindrical brick culvert, 3 ft . in diameter, re-
placed by a 36 -inch cast iron pipe which is part of a storm sewer. The pipe is explosed on the river side of the towing path.
1.10 CROSS-OVER BRIDGE From 1856 to 1865 a cross-over bridge carrying the towing path from the north side of the canal to the south was on the site of the College Run Cul-
vert. It was a double intersection timber truss about 80 ft. long. The abutment on the north side was part of the wall along the canal and can be distinguished from the arrangement of the stone in the wall. The south abutment was on the towing path and was a stone tower with a ramp sloping to the east. No evidence of this is now present.

The bridge was removed during the Civil War after the

Alexandria Aqueduct was converted to a roadway. After this
the crossover was at the Foundry Branch Culvert.
Boulder of gabbro on taming path.
1.25 DUTCROP ON BERM Dark gray gabbro, cut by 4 dis-
tinct joint planes, is exposed at the base of the concrete wall on the berm. Blasting with black powder for excavation of the canal in this area in 1828-30 caused considerable damage to surrounding structures and large rocks were blown
company. It was transferred, along with part of the adja-
cent street, to the District of Columbia in 1897. The wall
circular arch with a span of 22 ft . and a rise of 10 ft .

There are 30 ringstones and a keystone of cut Aquia sand-
bian (Foxhall) Foundry.

Foundations for the old foundry buildings on the river for 200 ft .
side of the canal east of the culvert are mainly gabbro, schist and some Seneca red sandstone. The foundry consisted
of 4 stone buildings housing the molding, casting, boring, and finishing shops. A large 4-story stone building and several shops and houses were on the north side of the canal. Buildings on the south side of the canal were still standing in the early $20^{\text {th }}$ Century, and were used as a distillery and for other purposes after the foundry closed.

A large wooden ice house of the Independent Ice Company was erected at the foundry in the late $19^{\text {th }}$ Century (Davis 1908).

The foundry was built in 1801 by Henry Foxhall and was one of four foundries in the U. S. supplying ordnance to the Federal government. It was sold in 1815 to General John Mason who had continuous litigation with the canal company during the early construction of the canal because of damage from blasting. The foundry closed about 1856, 7 years after Mason's death. Consisted of baring mill, cupola house :

$: 6 \quad$ structed in 1833 as 3 square drains $\begin{gathered}2 f+\text { wide } \times 3 f+\text { ing h } \\ \text { built of } \\ \text { rubble }\end{gathered}$
"Columbian Foundry Seneca the remains are
Seneca red sandstone rubble and $[$ situated under the tow:9 ingpath between the present overfall and waste weir. The ${ }^{25}-$
present overfall is a concrete apron, 50 ft . wide with six
"
a
ft. west, is a concrete frame with 3 screw gates. On the

grade of 1 on 12 for the caisson and 1 on 8 for counter a $_{\text {. }}$

It was counter balanced by stone weights of 572,000 pounds
:- auxiliary steam engine. In Kay 1877 the pulley anchors

Wall on berm - supporting Canal Rd., Foundry Branch, west : rubble schist gramochorite.
R.R. in 1892.
3.26 (3.26) SITE OF WASTE 4, An overfill, constructed in

1833, was formerly 200 to 300 ft . east of the old Potomac Co. locks at Fletchers Boathouse.
 quartz-garnet-mica gneiss with fragments of schist,

15- Wissahickon (Boulder gneiss) Formation along Canal Road. $1:$ Cleavage dips $30^{\circ} \mathrm{W}$; joints strike $\mathrm{N} 60^{\circ} \mathrm{E}$ dipping $40^{\circ} \mathrm{SE}$, N32 ${ }^{\circ} \mathrm{W}$ nearly vertical. Wall of slabs of schist and gneiss rubble along canal Road.
 The culvert and viaduct were constructed in 1829-30. The
is stream culvert (Maddox :Branch) has a 6 ft. span, 3ft. rise, $\therefore-$
with 10 ringstones and keystone of cut granite. The rest
\because of the culvert is schist rubble; on the towingpath side the 2Ξ
24 face off the culvert and the section under the railroad are
${ }^{35}$ concrete with an arch of the same dimension as the berm.

Seneca red sandstone. The locks extended from the head of the embayment on the river, known as Lock Cove, to near the present waste weir. Along the spillway, which follows the
line of the old locks; some stone walls from the old locks remain. The canal at the head of the locks extended 2 miles west: to Dam no. 1. It was 4 ft . deep, 25 ft . wide at the top, 20 ft . wide at the bottom and is now covered by the railroad grade along the lower part. The $C \& 0$ canal bed is along the line of the Potomac Canal to Lock 5. Ruins of the Cloud-Edes Mill, 200 ft . west of the old locks and 50 1801. ft. on the riverside of the canal, was built in the latter :6

Only the foundation of coursed rubble schist and boulder :
gneiss remains at the head of the old mill race. The
millers house on the berm opposite Fletchers Boathouse is
roughly coursed schist rubble (Clark 1930).
Guano factory near river at Ides Mill 1870's.
our g opuntia m 1889.

Peabody

 Mills 1894 Lack millBoulder Gneiss) is at the northwest corner of the parking lot on the berm; schistocity strikes $N 50^{\circ} \mathrm{E}$, dips $30^{\circ} \mathrm{NW}$. Ledges and low scarps formed of schist and gneiss are exposed along Canal Road west to mile 4.30 , schistocity strikes
$N 45^{\circ} \mathrm{E}$, dips $30^{\circ} \mathrm{NW}$. A prominent joint dips 40° to the east;
a second set of joints is parallel to Canal Road.

Place diagram of area around Fletchers showing old locks etc. in relation to present features. Original draft 8 "xi", reduce to $3^{\prime \prime W} \times 2{ }^{\prime \prime}$.

frame, with 3 gates and insert boards. 2 of the gates have paddle valves at the base. West of here to above chain
$:$ Bridge the canal has a liner of plastic sheets to prevent
\therefore leakage in the area where a trunk sewer was placed in the bed \therefore of the canal in 1967.
3.38-4.01 (3.38-4.01) $\left[\frac{S E C I O N ~ F}{[F T-2)}\right.$ The contractor, Jesse
\therefore Leach 8 . So., was awarded a silver medal on January 1, 1830
\therefore for the first section completed under letting of December for the first section completed
1829.
3.55 (3.55) $\frac{\text { CULVERT }}{[1 \angle T \nmid-7]}$ A brick arch culvert with coursed. schist rubble spandrels, etc., is under Canal Road. Not visible in summer
3.65 (3.65) AOULDER A large boulder on the river side of the towing path, 600 ft . downstream from the $\mathrm{B} \& \mathrm{O}$ R.R. bridge is dark gray schist (Wissachickon Formation,Boulder
: Gneiss), with quartz, fieldspar (plagioclase) and mica
(muscovite) well developed; pyrite cubes and gamets up to $1 / 8$ inch size are common; foliation is prominent. The wall between the canal and Canal Road is built of coursed rubble 13-
\therefore slabs of schist.

This bridge was built in 1909 as part of the Washington
and Westem Maryland R.R. It is a single span, steel,
through whipple truss over the canal and a single, skew span, steel, through Pratt truss over Canal Road.

3.77 (3.77) Culvert I The original culvert was constructed in 1830 and was replaced in 1967 by a 5 ft . concrete pipe. The cut in the stream channel on the river side of the towing path exposes dark gray schist (Wissahickon Formation, Boulder Gneiss) with veins of white quartz; muscovite and chlorite grains are included in the quartz vein. Promintent joints are at $N 40^{\circ} \mathrm{E}$, dip $40^{\circ} \mathrm{NW} ; \mathrm{N} 55^{\circ} \mathrm{E}$, vertical; $\mathrm{N} 85^{\circ} \mathrm{W}$, dip $60^{\circ} \mathrm{S}$; $\mathrm{N} 75^{\circ} \mathrm{W}$, vertical; the latter joint has slickenside surfaces. Schistocity strikes $N 40^{\circ} E$, dips $20^{\circ} \mathrm{NW}$.
3.88 (3.88) WASTE (OVERFALL) Originally constructed in $\begin{gathered}359.1-15 \\ 359.15\end{gathered}$ 1830, rebuilt 1845, the present overfall, is a concrete apron 300 ft . long. The wall of coursed rubble schist on river side of towing path beneath the concrete apron is
\therefore a remnant of the original waste. Reconstructed 1974; 139 paces long, 10ft, wide at top
23 . 4100 MP 359.18
$\because 4.22$ (4.22) CHAIN BRIDGE The original timber bridge;
Quarry along north side of Canal Rd, $300-400 \mathrm{p}$. .ant of Chain Braze

water frame of in w England white pions bought E ruth by
built in 1797 by Georgetown Bridge Company was the first
bridge across the Potomac River, replacing a ferry that
had operated nearby since 1738. The bridge was a single
span, 120 ft . long, across the river channel only. At a butment, massive sties held together by iron pins collapsed in 1804, was rebuilt but burned 6 months later. outcrop removed in quarrying'
designed by James Finley
In 1808 a timber span, 136 ft . long with iron chain suspen128 fr . between stone towers
sion, was built. It was carried away in the flood of 1810. Va. end. -warehouse built by Thos.Lee : official/ tobacco inspection warehouse Other bridges using chain suspensions were built between V94-1815- gristmill, brewery, distillery, cooper. blacksmith shops at 1810 and 1840 , but were carried away by floods. The
bridge company was purchased by Georgetown City in 1833
and in 1840 a timber truss was constructed on stone piers
spanning the river channel. It was severely damaged by
the flood of 1852. A sixth bridge built by U.S. govern-
ment in 1853, a single span over the river channel only.

This was replaced just before the Civil War by an 8 ft .
span, through, timber Howe truss with a heavy laminated
timber arch enclosed in the truss frame, similar tc

Aqueduct Bridge of 1868 . It was $1351 \mathrm{ft} . \mathrm{long}$ and 46 ft. above river level on stone piers, and built
of schistose gneiss from the bottom land adjacent to the bridge. This was replaced in 1874 by a bridge built by Phoenix Bridge Co., with 6 through iron Whipple trusses each 172 ft . long and 2 each 160 ft . long on the stone piers of the 1853 bridge. By 1910 the Virginia abutment was undermined but repairs "not made until 1928 when the abutment was rebuilt. The bridge was weakened by the 1936 flood and taken down in 1937. The present bridge was opened June 17, 1938. It is an 8-span, continuous deck, haunched plate girder placed on the old stone piers and was built by the Tulle Construction Co. The bridge carries water mains to Virginia below the deck.

The George Washington Memorial Parkway on the berm of the canal extends from Chain Bridge to west of Carderock.

It was built in 1962 from Carderock to Glen Echo, and from

Glen Echo to east of Lock 5, in 1966. The short section near Chain Bridge was opened in 1970. 500 ft . west of Chain Bridge, on the berm side of the canal there were carpenter shop and company houses; these were removed for construction of the parkway. 4.25 (0.03 mi. above Chain Bridge) modern culvert, comerete box $8 \mathrm{ft} . \mathrm{span}$ (Prentice) Reinforced, 6 fr: high.
4.31 (4.31) OUTCROP ON BERM Greanish schist of boulder gneiss phase of Wissahickon Formation forms low ledges along the Parkway. Some parts of the outcrop are highly contorted; quartz and feldspar bands 1-inch thick are prominent and expanded to 2-inch thickness in contorted garnere and pyrite are present
ie areas; Λ Schistocity is $N 40^{\circ} \mathrm{E}$, dip $30^{\circ} \mathrm{NW}$; prominent joints are $N 70^{\circ} \mathrm{E}$, vertical; $N 40^{\circ} \mathrm{E}$, dip $70^{\circ} \mathrm{SE}$; $N 65^{\circ} \mathrm{W}$, vertical;

359, 74

A 5 ft . concrete pipe, carries drainage from the Dalecarlia Filtration plant under the
canal. The cut on the river side of the culvert is in gray schist of the boulder gneiss phase of the Wissahickon Formation. Schistocity is $\mathrm{N} 15^{\circ} \mathrm{E}$, dip $45^{\circ} \mathrm{NW}$; joints are $\mathrm{N} 10^{\circ} \mathrm{B}$, vertical; $\mathrm{N} 35^{\circ} \mathrm{E}$, dip $35^{\circ} \mathrm{SE}$; $\mathrm{N} 15^{\circ} \mathrm{E}$, dip $45^{\circ} \mathrm{NNW}$. Schist boulders along the towing path contain prominent quartz blebs up to 4 inches on a side. The low escarpment on side of the parkway to the west exposes schistose boulder gneiss, :1 Wissahickon Formation with prominent joints.

4.78359 .94 CULVERT K LITTLE FALLS BRANCH The original.

 culvert was built in 1830-31. The present culvert, built :6 in 1962, is a 20 ft . flat, concrete coursed rubble span, 6 ft . high. The wings are quartz-mica schist. Numerous schist boulders are in the stream below the culvert. $\because-5.00 \operatorname{MP}(360,18)$ chamber was originally gneiss and the upper part Aquia
2. sandstone. The lock was rebuilt in 1868 and altered in 25- Suing gaves in head of lock. RE 79 , map $\$ 66$.
1876 for a drop gate at upper end. The swing gates were
apparently substituted for the drop gate in the 1939 restor,
ation. It was seriously damaged in flood of 1877 . It was
rebuilt in 1878. In rebuilding in 1868 and 1876 granite
and gneiss were used in chamber to replace some of Aquia
sandstone. Seneca red sandstone was used in circular
quoins and lower recess. The coping is now Aquia sandstone
and Seneca red sandstone except in the area of the upper
gate which is concrete. The breast wall, formerly at lower
end of the upper recess was removed for installation of the drop gate. The wall between the lower end of Lock 5 and the Guard Lock to the south is rubble schist and gneiss. The concrete apron on the face of the guard wall between the head of Lock 5 and the guard lock was apparently constructed as part of 1939 restoration. It rises 6 ft . above the former level of the coping. The by-pass for the lock flume is in a culvert on the berm side. A concrete overtalil $25-$

10 ft . long, 2 ft . high is beneath the towing path, 15 ft .
upstream from lock.

The feeder, 150 ft . south of Lock 5 is the former

Potomac Co. canal extending downstream from Dam no.,1. It 6
control gates. Boats using the feeder could pass from the 9
c-river to the canal but not from the canal to the river
because of current in feeder. The gate walls are black
. schist and gneiss (Wissahickon , boulder gneiss). The stop
gate, 600 ft . west of the inlet gates has walls of schist :ミ-
:i and gneiss. An overfall of rubble capped with concrete is

600 ft . West of the stop gate. Lockhouse formerly on bermat head of \therefore lock; removed in construction of Geo, Washington Parkway

As originally planned the eastern terminus of $C \& 0$ Ground breaking 4 July 1828
\therefore Canal was to be at Lock 5. .The decision to extend the canal
to Georgetown on August 9, 1828, was based on requirements
imposed by subscription to stock by Georgetown and other
\qquad

The extension was opened late in 1831.

From 1831 to about 1853 the roadway to the Little Falls Bridge (Chain Bridge) crossed the canal on a timber bridge just below Lock 5. The original Lockhouse no: 3 serving Lock 5, was destroyed in the flood of 1852. It was rebuilt as a timber frame house on a masonry foundation at the base of the hill on the berm. It was removed for construction of the parkway. The retaining wall on the parkway is course a rubble of quartz-mica schist.

large boulder of dark gray to black schist (Wissahickon
: boulder gneiss) with mica pods $\frac{1}{4}$ to 2 inches long; quartz
is in layers up to $\frac{1}{2}$-inch thick; pyrite cubes are up to $1 / 8$ inch on a side. Outlines of elliptical white quartz nodules

2 ${ }_{2} 3$

26 are prominent on the smooth face of the boulder.

Had drop gate RG79\#66 (map)
Locks 7-19-all swing gates RE 79\#66. (map)
mainly Seneca red sandstone with some cross-bedded, pebbly Aquia sandstone, granite and gneiss. The upper recess was altered and a drop gate installed in 1876. This was replaced by a swing gate in the restoration of the canal in 1939-40. Lockhouse no. 4 for Lock 6 is on the berm; built in 1831 it was washed away in the freshet of October, 1847. It was rebuilt and is now white-washed rubble schist,
: \quad l $\frac{1}{2}$ stories high. The flume passes north of lockhouse and $: 8$ has a fixed overfall and concrete bridge at its head.
:- Large boulders of Wissahickon Boulder Gneiss, mica schist 2bsue the lock
phase are on the oerm; pods of mica $1 / 16$ to $1 / 8$ inch in :
\therefore size, veins of quartz and feldspars with quartz pods up to $\frac{2}{4}$ inch in diameter are prominent. 4 smooth joint faces :- are on one boulder, other boulders have 3 joint planes at oblique angles; schistocity planes are distinct.
\therefore Flume - rubble wall of ss, gneiss (boulder), schut.
5.59

SIDE TRAIL Large boulders of gray schist
\therefore (Wissahickon Boulder Gneiss) with garnets up to $1 / 8$ inch

```
size; biotite (mica), chlorite, and hornblende of similar
size; glassy quartz pods up to 1 inch size are at the end
of a short trail leading from the river side of the towing
```

path to the feeder. 3 oblique joint planes are in the
schist. Large rounded boulders of white quartzitic gneiss
are also present and were derived from river terrace
Feeder entry = old Potomac Canal, reveled with gray schist, boulder
gravel. gneiss.
10-5,65 Boundary Ste of D, C. \#3.
5.68 Constructed 1829. This culvert is

200 ft . east of the Little Falls pumping station. Spandrels
and parapet are built of dark gray quartzitic, garnetiferous
gneiss rubble; the parapet is 10 ft . high. The culvert is filled to the arch.

5.60 (5.72) DAM No 1 Constructed 1828-30, original cost $\$ 40,704$. The dam was $1,750 \mathrm{ft}$. long, 5 ft . high but now it is a crude pile of stone downstream from the concrete dam. : The Potomac Company had a small wing dam to divert water to
its canal at this point before 1828 and in 1830 this was extended to an island 855 ft . from Maryland shore, the gap to Virigina shore being filled with brush, stone, and . gravel. Later the dam was covered with stone laid in the form of an arch capping the rubble and gravel. The dam was designed to form a pool 6 ft . deep and 2,500 ft. long. The dam was breached by ice in November, 1832 and by flood :0-:
$:$ June, 1836. It was rebuilt in 1870 after serious damage from a flood in 1868. The 1870 dam was 10 ft. high with a sloping stone front and a back slope filled with gravel
and earth. Much of the dam was carried away by ice in
:- 1873 and was rebuilt again. It needed continuous mainteof water
nance and leaked so badly that supply for Georgetown level
:s- was marginal. After the canal was taken over by the

National Park Service the dam was damaged by the flood of
1942. It was repaired and grouted with concrete in $\frac{1942.1943}{[-50]}$

26 and capped with concrete in 1949.
The new concrete dam and water intake was built by the

Army Corps of Engineers as an auxiliary water supply for the District of Columbia in 1956-58 at a cost of $\$ 835,013$. This bridge over the canal at the pumping station is a deck haunched concrete girder span with concrete slabs between the girders.

Ground-breaking ceremonies for the canal were held
at this point on July 4, 1828.
5.75 informal spillway - shoin on Maclall map; conudin constructing
pelunzing plant
5.61-5.88 (5.73-6.00) OUTCROP Large boulders of Kensington Gneiss and schist from the Sykesville Formation are on the river side of the towing path, 200 ft . west of the pump-
ing station; quartz, feldspar and weathered biotite are prominent. Numerous gray schist boulders are on the berm. At (6.00) there is an outcrop on the berm of gray schistose gneiss (Keñington Boulder Gneiss) with prominent joints at N75 5°, $\operatorname{dip} 62^{\circ} \mathrm{SE}$; two other sets of joints at right angles; joints along with fracture cleavage cause rock to break

4 slats of cut atoms from lank on Edge of tropath, 3 Amen nd ss, I gray grues with hounbiuder, gray frécpar and a lite clear quarts.
stone are in the upper recess. The original coping was
white Aquia sandstone. The lock was extended and a drop gate placed in the upper recess in 1877. Lockhouse no. 5, 40 on berm 50 ft . north of lock, $1 \frac{1}{2}$ stories high, is made of white-washed schist and gneiss rubble. A graded flume is behind the lockhouse. lined with coursed gray grison nubble, some gray quatifitic schist,, $8 / \mu$. wide $\times 4 / 4$. dep.
$7.00-7.20$
339.35 \quad GLENECHO The wooden structures on the bluff to the north of the canal were formerly the Glen Echo amusement park. This park was started in 1889 as a community development and converted to a Chataugua in 1891; : :-
from 1893 to 1897 it was a vaudeville park. In 1903 it was purchased by Washington Railway and Electric Co., later

Capital Traction Co., for use as an amusement park. It
closed in 1968 (
) and is
now being developed by the National Park Service as a
recreation and visitors center. 339.42 Singh gat sew wast - wing incl 10 pt . lng, at singly
 s-

	$7.13^{\prime} 339.42$ WASTE WEIR This waste has a concrete frame
2	and a single screw gate.
3	J
4	7.14 CULVERT 5 MINNEHAHA (NAILORS) BRANCH
	Original culvert constructed 1829. This was replaced in
6	
7	$1960^{\circ} \mathrm{s}$ with a concrete arch faced with quartzitic schist;
8	12 ft . span, $1 \frac{1}{2} \mathrm{ft}$, rise, 14 ringstones and keystone in
9	
$10-$	the facing. The parapet rises 2 ft. above keystone. 7,34 Informal apullway, $132 \mathrm{fr} \operatorname{lorg}$, shown on Thactill majo
	\checkmark
12	7.57 CULVERT 8 CABIN JOHN CREEK The original
:	
12	
15-	It had a span of 22 ft . and a rise of 5 ft . It was rebuilt
16	1848 and in the $1960^{\circ} \mathrm{s}$ it was replaced by a concretel flat.
17 18	lvings sthaygly. span faced with dark gray schist. The revetment along the
! 8	span faced with dark gray schist. The revetment along the
15	towing path is dark gray, fine to medium grained gneiss
$20-$	
2i	(Wissahickon Boulder Gneiss). Cabin John Island between
22	the canal and river is formed of brown silt and sand exposed
23	
24	In 15-foot bluffs along Cabin John Creek. A "granite"
25-	

quarry formerly near the mouth of Cabin John Creek was
opened in 1830. Schistose gneiss of the Wissahickon
Boulder Gneiss was quarried and shipped via canal until
the late 1850's (Mathews, 1898).

Cabin John Bridge, 1,000 feet notth of canal was built in 1857-63 and its arch was keyed on December 4, 1858. The span is 220 ft. , with a rise of 57.26 ft . It was the second longest arch in the world when built. The coping is 100 ft . above the valley floor. Ringstones and the keystone are cut granite from Quincy, Massachusetts. Spandrels are Seneca red sandstone and gneiss from Montgomery County, Md.; the parapet is also Seneca red sandstone. A conduit, 9 ft . in diameter, is on top of bridge and carries water for the District of Columbia (Curtis, : =2 1899).

near botiom
7.76

OUTCROP ON BERM llark gray,
fine graind grsiss (Wiseatichiv. Bonedur Ansiss)
is Exposed in a low bluff. Quarts vins ug to 4 inche wids cut the graies. Schictriky strites NSOE ant dies 80 NW. Four joint plarsis, N50E, dip 60 SE; N 10 W , dif 85 W ; $N 30 \mathrm{~W}$, die $45 N E$; N65W, dif 455 W , are procent. 10 Ht . कot the of the trving path is a large bruldes of dank wissh-cknd Boulder Gangosed mainly of fuldoger, and muscritts-bitite (micas) with largs dosk gray, fine grainad Nehist unclusecin in thi gries.
wide occurs in low ledges. Schistocity strikes $N 35^{\circ} \mathrm{E}$ and
dips $70^{\circ}-80^{\circ} \mathrm{NW}$. A joint cuts the rock at $\mathrm{N} 55^{\circ} \mathrm{E}, \operatorname{dip} 60^{\circ} \mathrm{NW}$.
8.01 (8.04) OUTCROP ON BERM Dark gray gneiss with 366.34 quartz veins (Wissahickon Boulder Gneiss)forms low ledges. Joints at $\mathrm{N} 55^{\circ} \mathrm{E}$, dipping vertical; $\mathrm{N} 60^{\circ} \mathrm{W}$, vertical; and $N 60^{\circ} \mathrm{W}$, dip 45° SW are present. MP 8 366.35 wall ends at curer tr moth at 366.34

$$
8.13 \text { (8.19) OUTCROP ON RIVERSIDE OF TOWING PATH } 1,000
$$

ft. east of Lock 8 there ledges and boulders of gray gneiss with dark gray, fine grained schist inclusions (Wissahickon Boulder Gneiss); these ledges are also extensive in the
: river. A revetment formed of gray granite gneiss blocks is
along the towing path; quartz, feldspar and biotite (mica)
grains up to $\frac{1}{4}$ inch size are in the gneiss. 366.57 outcry on bum gray gneiss - dip 60° upitiam.

Rurchanpile along i canal, wall on mivnide of troth $10-15 \mu \mathrm{y}$. high
$8.34(3.34)$
365.95 Lock 8 Constructed 1329-30. The lock is Lift? mainly Seneca red sandstone and some gneiss blocks; brick
repairs are in the chamber. A graded flume is on the berm
benind the lockhouse. Lockhouse no. 6, on the beril is $1 \frac{1}{2}$ swing gatts.
stories high and built of whitewashed coursed schist rubble. 366.70 Cabin gon forthudge
8.42 (8.47) CULVERT 9200 ft . west of Lock 8, construct- \checkmark 365,85 Rebuilt 1971. cmerath cap orn mettle arah.
ed 1829-30. The culvert has a segmented arch with a 4 ft . span, 2 ft . and a rise of 8 ringstones and a keystone are in the arch. The abutment is 2 ft . high and the parapet is 6 ft . high. Spandrels and the parapet are coarsed schist rubble. Curned wangs 12μ y. lony
8. 56 (8.59) OUTCROF ON BERM Blocky gray gneiss cut by small quartz veins (Wissahickon Boulder Gneiss) forms low : ledges. Schistocity strikes $\mathrm{N} 50^{\circ} \mathrm{E}$, and dips $70^{\circ} \mathrm{NW}$. Joints are at $\mathrm{N} 10^{\circ} \mathrm{W}$, vertical; $\mathrm{N} 20^{\circ} \mathrm{W}$, dip $45^{\circ} \mathrm{NE} ; \mathrm{N} 70^{\circ} \mathrm{E}, \operatorname{dip} 80^{\circ} \mathrm{SE}$; $\mathrm{N} 80^{\circ} \mathrm{E}$, dip $65^{\circ} \mathrm{SE} ; \mathrm{N} 30^{\circ} \mathrm{W}$, dip $100 \mathrm{NE} ; \mathrm{N} 55^{\circ} \mathrm{W}$, dip $30^{\circ} \mathrm{SW}$.

granite form the arch with a springing ine at water level.

The parapet is $7 \mathrm{ft} . \mathrm{high}$ and spandrels, parapet and wings are coursed schist rubble.
8.70 365,58 LOCK 9 Constructed 1829-31. The lock is mainly gneiss from French's quarry just east of Lock 7. 8 Some Seneca red sandstone and Aquia gray sandstone with pebbles up to 2-inch diameter are mainly in the coping. :: Patches of concrete repairs are also in the coping. The upper recess was extended and a drop gate installed in Flume on bum 25 fV .from hok; graded 1877. A pivot foot bridge formerly crossed the lock.

Masons marks are on the berm side of the chamber, 15 ft.
${ }^{17}$ east of upper recess- a similar but inverted mark is on the berm side of the chamber 15 ft . west of the lower
z-- gate.

Lockhouse no. 7, on berm between Locks 9 and 10, is

1咅 stories high and is built of coursed schist and gneiss 24

25-rubble.

```
8.77 (8.77) LOCK 10 Constructed 1829-31. The lock is
                    Ires 5-10 upained in 1975
mainly granite gneiss with some Seneca red sandstone in the
chamber; grains of biotite, feldspar and quartz up to \frac{2}{4}
inch in size are distinct in the granite, especially in
areas polished by rope drag. The upper recess were extended and drop gate installed in 1877. A graded flume is on the berm. Embankmint on herm frek 10 to trek 13; masonry win mav lom End, \(6 / P \cdot\) opmang.
```


The semi-circular, skew arch has a 12 ft . span and 6 ft .
rise. The face contains 12 ringstones and a keystone of if cut granite. The abutment, 6 ft. high, is also cut granite.

The parapet which is 7 ft . high, spanerels and wings are
coursed schist rubble. This culvert collapsed in February, Coying $20 / f$.abro stham

1847, and was rebuilt, lengthened, and buttresses added in

22 1848. Most of the flow of Rock Run was diverted to the west

In construction of the beltway (I-495) in 1962 and now
passes beneath the canal in a new culvert at mile 9.54.

on towing path at the lock is cut white Aquia sandstone.

Masons' marks are on the chamber and recess walls. $\pi \nabla$ symbols are on the coping on the bermside near the center of the chamber; $\phi \& \frac{A}{1}$ are 2 to 6 tiers below the coping on the berm side near the center of the chamber; $\underset{x}{ }$ is on the towing path side on the coping at the lower end of the lock; $\frac{t}{}$ is 2 tiers below the coping


```
Eype lock in which water entered the chamber from a culvert
in the berm wall. The culvert openings are still intact
although the upper recess was rebuilt and a drop gate install-
ed in 1877. The Lockhouse was formerly on the berm, 40 ft.
north of middle of lock. It was a 2-story, frame building
which was removed in construction of the parkway. Only
part of the stone footings remain. A graded flume is 50 ft.
from the lock on the berm. }3\textrm{f
```

9.36 364.92 LOCK 13 Constructed 1829-30. The masonry is
mainly granite gneiss from French's quarry east of Lock 7.
Some Seneca red sandstone is in the circular quoins at the
upper and lower recesses. The original breast wall removed
In 1877 preparatory to rebuilding the upper recess for a
drop gate. The breast wall was later rebuilt at the head
of the recess and a long gate was installed. A graded fiume
is 15 ft . from the lock on the berm. The lock gates and an
old pivot bridge over the lock were burnt on June 27, 1863

```
by Col. J.E.B. Stuart. The flood of 1889 damaged the lock and carried the pivot bridge away. Lockhouse no. 9 was formerl \(y\) on the berm, 40 ft . north of the middle of the 5-lock. It was a \(1 \frac{1}{2}\)-story stone rubble building which was
``` removed in construction of the beltway. Two girder, concrete deck bridges over the east end of the lock carry the Capital Beltway ( 1495 , American Legion Memorial Bridge) over the : 2 -
canal. The bridges were constructed 1960-62 and opened December 31, 1962.

; built mainly of gray granite gneiss with some Seneca red sandstone at the west end, berm side. Slots for stop planks
are in the wall at the breast. Rods for control of the \({ }^{36}-\)
flow to the culverts in the lock walls are at the center of

22 the upper recess on both the towing path and berm sides. A 23
single screw gate, concrete frame and culvert waste weir are \(25-\) on berm side at head of lock feeding to a graded flume, \(9 \mathrm{~s}_{\mathrm{n}} 25\) Bum on low embankment wast ter 200 ft wrot of Cuhbist 15
ft. from the lock on the berm. The lockhouse formerly was on towing path side at the middle of the lock. It was a 2 story, frame house; part of rubble foundation remains. The

Log wall level, named for extensive \(\log\) revetments along this section of canal, extends west 3.9 miles from Lock 14 to Lock 15.

9.54 CULVERT Constructed early 1960's. The drainage of Rock Run was diverted to this culvert when the beltway was constructed. The culvert has 2 gallery, rectangular concrete conduits, each 10 ft . wide and 10 ft . high. The facing is brown quartzitic schist with white granite coping on the wings. Wissahickon gray schist crops out in the stream bed below the culvert; schistocity is \(N 10^{\circ} \mathrm{W}\), dip \(80^{\circ} \mathrm{W}\); joints are at \(\mathrm{N} 85^{\circ} \mathrm{E}\). , vertical; \(\mathrm{N} 45^{\circ} \mathrm{W}\), dip \(10^{\circ} \mathrm{NE}\). The David Taylor Model Basin is on berm. Construction was started by the Navy on this installation in 1933.
\(9.65364,65\) WASTE WEIR Originally this waste weir was
a concrete frame with 3 gates. Formerly two of the gates
had paddles but now all the gates are board inserts.
9.66 pijc culvit (PNutica)
MP/ 10364,28
\(9.90 \quad 364.40\) SWING BRIDGE This bridge was constructed
in 1941 by the CCC to give access to the picnic area adijacent to the towing path. only the circular center pier

1c-and abutments remain. The pier is built' of blocks of quartzitic schist rubble. A circular rail on the pier formerly supported the swing bridge. The abutments are quartzitic schist.
9.94 SITE OF OLD OVERFALL Originally there was an overfall waste here that drained south via narrow ravine. 9.97 Informal oviplaw 144 fk -long (Puntici)
10. \(4^{\circ}\) CUCVERT 14 Constructed 1840. The arch is semicircular with a \(5^{4} \mathrm{ft}\). span and a 2 ft . rise. 8 ringstones and keystone of cut Seneca rea sandstone are in the face of the arch. The parapet is 3 ft . high; abutments are
10.22 turning bacix

\subsection*{363.85 - viaduct}

The viaduct over the road to the east of che culvert
is a flat concrete span faced with brown quartzitic schist.

It was constructed in the 1960's.
363,66 - start old hicks on bum for 200?, deldack?, hum gutsont \(4 A\) \(1 \checkmark\) Basin on tum 400 AN . hong to goer of hicks; 30 ft . wi de
10.54 OUTCROP ON BERM Wissahickon gray green / \(/\)
schist, schistocity \(N 5^{\circ} \mathrm{E}\), dip \(68^{\circ} \mathrm{W}\), forms low ledges in
the canal prism which are visible during low water.
10.63-10.65

OUTCROP IN BED OF CANAL

Wissahlckon gray schist, schistocity \(N 10^{\circ} \mathrm{E}\), dip \(55^{\circ} \mathrm{W}\), with joints at \(N 10^{\circ} \mathrm{E}\), vertical; E- \({ }^{W}\), dip \(20^{\circ} \mathrm{S}\). ; \(\mathrm{N} 45^{\circ} \mathrm{E}\), dip \(30^{\circ} \mathrm{SE}\);
and \(N 80^{\circ} \mathrm{W}\), vertical is visible in the canal prism during
low water.
 10.76 SITE OF OLD OVERFALL In the early days of

The canal an overfill drained south along the narrow,
shallow ravine across the Carderock. Recreation Area. 370.66 Acerss, uppu ind Carsural-parking.
\(10.98^{\checkmark}\) OUTCROP ON BERM Wissahickon gray schist
with small rounded quartz pods up to 2-1nch size forms low
rattle on
summers

End toke havre 370.00
on form
ledges. It is tightly folded with schistocity striking
\[
\mathrm{N} 12^{\circ} \mathrm{E} \text { and dipping } 57^{\circ} \text { to } 70^{\circ} \mathrm{W} \text {; joints are } \mathrm{N} 20^{\circ} \mathrm{E} \text {, dip } 42^{\circ} \mathrm{E} \text {; visible in }
\] \(\mathrm{N} 25^{\circ} \mathrm{W}\), dip \(20^{\circ} \mathrm{NE}\); \(\mathrm{N} 75^{\circ} \mathrm{W}\), vertical (forms face of canal cut). 4 ft . of dark gray to black silty clay over granular yellow
f to brown and red clay silt lies above the rock. MP\| 370.80
11.00-11.30 HIGHWALLS This section of
canal is known as The Highwalls because of the high revetBegin 100 g . cato of cums oof)
ments needed to retain the towing path where the river cut
into high rocky ledges. A night watch was kept on the

Highwalls in the early \(1830^{\prime}\) s because security of the re-
vetment was questionable. Similar highwalls are from mile
12.40 to 12.60 . Conrad mettle dry will; 10-6 gd . high; mainly scheat se grieve * A. me mitagnaywacke; tine \(A \mathcal{F}\). then \(\prod\) sucking wall
11.04 OUTCROP Wissahickon mica schist is exposed
in prominent cliffs along the east bank of the river channel
nubbin
east of Vaso Island. Cleavage is \(\mathrm{N} 5^{\circ} \mathrm{W}\), dip \(55^{\circ}\) to \(70^{\circ} \mathrm{W}\);
prominent joints form cliff faces parallel to the channel
 mica schist with cleavage \(\mathrm{N} 5^{\circ} \mathrm{E}\) to \(\mathrm{N} 15^{\circ} \mathrm{E}\), dip \(65^{\circ} \mathrm{W}\) is on the berm. Prominent joints are \(N 70^{\circ} \mathrm{W}\), alp \(80^{\circ} \mathrm{S}\); \(\mathrm{N} 15^{\circ} \mathrm{E}\), \(\operatorname{dip} 18^{\circ} \mathrm{E}, \mathrm{N} 70^{\circ} \mathrm{W}, \operatorname{dip} 45^{\circ} \mathrm{N} ; \mathrm{N} 5^{\circ} \mathrm{W}\), vertical; N \(77^{\circ} \mathrm{E}, \operatorname{dip} 55^{\circ} \mathrm{N}\) and \(N 75^{\circ} \mathrm{W}\), \(\operatorname{dip} 45^{\circ} \mathrm{S}\). Cannot straight for \(200 / \mathrm{fr}\). across outcrops and them Shat straight stitch to long curer to month.
11.36

OUTCROP ON RIVER SIDE OF TOWING PATH
371.25 Marsdu tact, purist onemeing \(\# 2,3,4\).

Wissahickon mica schist with a vein of milky quartz 100 ft .
wide forms a broad low ledge. The vein trends \(\mathrm{N} 15^{\circ} \mathrm{E}\) and the quartz contains inclusions of mica schist engulfed at the time the quartz intruded the schist. Some of quartz is pink in color. Cleavage in the schist trends \(N 40^{\circ} \mathrm{E}\) and dips \(57^{\circ} \mathrm{W}\). Joints are \(\mathrm{N} 20^{\circ} \mathrm{E}\), dip \(47^{\circ} \mathrm{ESE}\); and \(\mathrm{N} 70^{\circ} \mathrm{W}\), vert1cal. A broad, flat bench cut into the rock south of the outcrop, is covered with river terrace gravel containing numerous well rounded cobbles and boulders of sandstone 371.30 forthige oren caval-Masadm Tract \#/ (100 fF wet y fortheede) Along had to 371,30 cana ind rus out on them thidthy 120 fy .
and quartzite. The bench is 50 ft . above present river
level.
11.18

\section*{SITE OF CULVERT ??}

6 11.52 Monhestric forthidge, Marsden tact. \(J\)
11.63 BOULDER ON SIDE OF TOWING PATH The boulder
is schistose gneiss (Wissahickon Boulder Gneiss) in which :
blocky, black hornblende is dominant; coarse-grained quartz
and feldspar are also present. The rock is banded and con-
tain fine-grained black schist lenses up to 3/4-inch thick.
\(\therefore\) The outlines of angular "boulders" inclusions, up to 6 inches hoot and g curer month
on a side are accentuated by their light gray weathered
:F surfaces. Quartz veins up to 2 inches wide cut the gneiss.
 Low ledges of gneiss crops are on the berm with schistocity
371.55
striking \(N 20^{\circ} \mathrm{E}\), dipping \(66^{\circ} \mathrm{NW}\). Prominent joints strike \(\mathrm{N} 60^{\circ} \mathrm{W}\), vertical; \(N 80^{\circ} \mathrm{E}\), dip \(55^{\circ} \mathrm{S}\); \(\mathrm{N} 30^{\circ} \mathrm{W}\), dip \(65^{\circ} \mathrm{SW}\), and \(\mathrm{N} 50^{\circ} \mathrm{W}\),
 by low ground 100 g . inde. Oitruop also along. knopath.
(75)

and wharf were on the berm in early \(1900^{\circ} \mathrm{s}\). The mill was a
large 2 story timber building. Granite was quarried in

Wissahickon Boulder Gneiss on the berm west of the mill.

The towing path is cut in the mica schist phase of the

Wissahickon Boulder Gneiss; cleavage and schistocity strike \(\mathrm{N} 10^{\circ} \mathrm{E}, \operatorname{dip} 85^{\circ} \mathrm{W}\); joints strike \(\mathrm{N} 80^{\circ} \mathrm{W}, \operatorname{dip} 55^{\circ} \mathrm{SW}\); and \(\mathrm{N} 50^{\circ} \mathrm{E}\), vertical. The berm bank is cut along a joint plane trending \(\mathrm{N} 80^{\circ} \mathrm{W}\).
\(371,60-371,72\) cure mirth, canal 150 fr.wids.
11.76??

CULVERT 17 Constructed 1828-30. The .5 from Cubit 18
circular arch of cut, green-gray granite gneiss has a span \(8 \quad\) and a rise of \(\frac{4}{8} \mathrm{ft}\).
of \(10 \mathrm{ft} . ; 14\) ringstones and keystone are in the face of the arch. The parapet is 1 ft . high and the springing line is
at the foot of the abutment. The spandrels, parapet and coping are coursed schist rubble. Cunt wrings; \(16 \mu 4\). embankment 11.8 Journfins
11.95
(Baton)??
OUTCROP 20 FT. SOUTH OF TOWING PATH
Wissahicion quartzitic schist with schistocity striking \(\mathrm{N} 10^{\circ} \mathrm{E}\) and vertical forms a low ledge. Similar rock crops out 100 ft . west, 40 ft . south of towing path.
MP 12: 371.78 Entry on from to basin erthich conturices to 371.85 ; curve 12.26 Extort Ems 18 jv. span (Prention)?
12.38 (12.42) CULVERT 18 Constructed 1830. This culvert 372.05
was blocked off in the \(1900^{\prime} \mathrm{s}\) and is now faced by a stone
wall on the towing path side and concrete on the berm.
hotraite M Aumemern
372.14 Concept wall on bum a concent atutront sizing \(12 \mathrm{f} . \mathrm{m} \mathrm{hmm}\).
12.40-12.60 (12.40-12.60) HIGHWALL SECTION The canal was 372.16
rebuilt and widened in this section in 1839 by blasting out
spurs of rock that protruded into the prism. Originally
the canal alinement here was sinuous because of the spurs.

schist forms a ledge on the berm; vertical joints trending

N-S cut the schist.
372.20 entry y 1972 break in frorgath embankment
\(=\quad 12.46(12.52) \quad\) OUTCROP ON TOWING PATH \(\quad\) Wissahickon quartz-
tic schist cut by quartz veins \(\frac{1}{2}\) to \(3 / 4\) inch wide crops 2:
\(\therefore\) out in an anticline. Schistocity is \(\mathrm{N}-\mathrm{S}, \operatorname{dip} 45^{\circ} \mathrm{E}\) and \(30^{\circ} \mathrm{W}\).
 downstream wing straight. Cut atm och, parapet oping subtile - quant

The outcrop is in a bluff on the river side or the towing path and is flanked by high revetment walls of coursed schist rubble on the side of the towing path. occasional onfurpe to) 12.5 (Banns) - Cutout, apparently same as Cubit 18. \(\checkmark \checkmark \sim\) \(12.55(12.62)\) OUTCROP ON BERM An anticline in well372.35
bedded Wissahickon quartzitic schist and quartzite cut by
granodiorite dikes forms a low ledge on the berm. Schist
and
Diagram. Draft \(6^{n \times 1} \times 2^{12^{n}}\) reproduction
Use field sketch, add data from Cloos Guide to Bear Island
quartzite beds are 2 inches to a foot thick with schistocity
parallel to the bedding. The schist is crenulated and fractured.
\(12.60^{\vee}{ }_{372.38}^{(12.68)}\) OUTCROP ON BERM An anticline in Wissahickon quartzitic schist and quartzite is on the berm at the east

Diagram- Draft \(6^{\prime \prime} \times 12^{\prime \prime}\) for \(2^{n h} \times 4^{\prime \prime} w\) reproduction Use field sketch, add data from Cloos Guide to Bear Island.
end of Widewater. West of here the canal oupupies.an old
\({ }^{23-h i g h ~ r i v e r ~ c h a n n e l ~ o n ~ t h e ~ n o r t h ~ s i d e ~ o f ~ B e a r ~ I s l a n d ~ f o r ~}\) 12,61-ounfen, beginning of widurates 372,38

3,000 yards. The old river channel is blocked off by high walls at the east and northwest ends of island. Water in the canal is up to 65 ft . deep in Widewater. The area north of Widewater and extending along the canal as far as Cool Spring (15.25) above Great Falls has numerous quartz veins cutting the Wissahickon schist and gneiss. Gold is present in some of the veins and was formerly mined. Maryland Mine, at the junction of Falls Road and MacArthur Blvd., was operated intermittently from 1867 to 1940 (Reed and Reed 1969; Ingalls 1960) but is now in ruins. Two other mines were also operated in the area. Most quartz veins are low grade or barren of ore but some of the veins contain occasional pockets rich in coarse sheet and 36

2- wire gold. The yield from all the mines was small and totalled about 5,000 ounces. The Wissahickon Formation is extensively exposed along towing path at Widewater. It is primarily a micaschist with quartzite and granitized schist

Lens shaped bodies of amphibolite are extensive in schist. An excellent display of the complex relations of metamorphic rocks are along the trails to the south on Bear Island (Cloos and Anderson 1950; Fisher, 1971). Cautionthe side trails are rugged and care should be exercised on
the smooth, bare rock surface.
372.40 - compete control town, 20 ft . tall, \(5 / \mathrm{p} \times 5 \mathrm{fy}\).
\(372,45-372,48\) Brach frond in tropath smitanhinit 1972. Bullygral thai hues
372,48 12.80 (12.89) WASTE WEIR This is the site of a former fiorin wallatay
large overfall spillway. A concrete comb and apron 20 ft .
wide, 200 ft. long is now buried 15 ft . beneath the towing path. The weir formerly had insert board waste, -on Maclelimap \(\checkmark\) 12.84 (12.93) OUTCROP ON TOWING PATH Wissahickon metagray wacke, with interlayered quartzitic and mica schists forms low ledges along the towing path. Bedding is from an inch to tens of feet thick. 3 small anticlines and isynclines occur within a 5 ft . section of the outcrop.

Bridge 13
\(13.02+\) Log wall (Prentice)
bridge was built in 1939 and replaced an older timber
structure. The bridge carries the towing path across a
channel leading to 2 waste weir. The abutments are coursed
schist rubble capped by dressed, coarse-grained granite on comente sill. Wests wii is 150 from trupeth.
gneiss with mica in bands \(1 / 8\) to \(1 / 4\) inch apart. Ledges in
- Wack wirer. Cleavage mutual at Firewater, 3 net g joints the vicinity of the bridge contain highly distorted schist

 with closely-spaced veins of feldspar and quartzose material. Wall flan ting abutment is coursed mixagragurace andre ss.

Small amphibolite lenticular masses extend south of the
waste weir. Achictrity is menial and at right angle the month hide to 800 W .
```

    * V
    12.94 (13.04) OUTCROP ON TOWING PATH Granitized, tightly

```
folded interbedded, thin-bedded quartzite and quartzitic schist, Wissahickon Formation, forms ledges along the towing path. It is cut by small quartz veins. Schistocity strikes \(\mathrm{N} 15^{\circ} \mathrm{E}\), dips \(50^{\circ} \mathrm{E}\); joints strike \(\mathrm{N} 20^{\circ} \mathrm{E}\), dip \(40^{\circ} \mathrm{ESE}\); \(N 50^{\circ} \mathrm{W}\), dip \(50^{\circ} \mathrm{NE} ; N 5^{\circ} \mathrm{E}\), vertical. 13.00-13.05 (13.10-13.15) OUTCROP ON TOWING PATH Wissa-
hickon muscovite-biotite schist with interlayer quartzite 13.1-Oruflow (Banox)

372.9 - perthole, 6 fis. deasister on trop ath (haf eut), 2 lange pothers on hum
373.1 - henuth foater
\(13.025-1328\) (13.15-13.38) OUTCROP ON TOWING PATH Wissa-
hickon granitized mica schist, medium grained and highly
foliated crop out in low ledges. The schist is composed
mainly of muscovite, biotite, quartz and feldspar and is
cut by veins and thin seams of light colored quartz and
feldspar alonig the foliation. Prominent horizontal fractures
are in the schist along the towing path at (13.25).

Schistocity strikes \(N 20^{\circ} \mathrm{E}\), dips \(60^{\circ}\) Se; joints strike \(\mathrm{N}-\mathrm{S}\),
dip \(60^{\circ} \mathrm{E}\), and \(N 70^{\circ} \mathrm{E}\), vertical. Granite dikes up to 6 inches wide intrude the schist at (13.30). They are light colored, fine grained and contain mainly quartz, feldspar, and some muscovite (mica).

13.28 (13.38) OUTCROP ON TOWING PATH LOW ledges of
metagraywacke crop out at the southeast end of the causeway.

The metagraywacke is black, banded and highly micaceous. Cleavage and schistocity strike \(N 40^{\circ} \mathrm{E}\), dip \(60^{\circ} \mathrm{SE}\); joints strike \(\mathrm{N} 80^{\circ} \mathrm{W}\), vertical; \(\mathrm{N}^{\prime} 80^{\circ} \mathrm{W}, \operatorname{dip} 60^{\circ} \mathrm{N}\); and \(\mathrm{N} 40^{\circ} \mathrm{W}\), dip \(70^{\circ} \mathrm{Sw}\); additional joints at the southeast end of the outcrop strike \(\mathrm{N} 50^{\circ} \mathrm{E}\), dip \(32^{\circ} \mathrm{SE}\); \(\mathrm{N} 20^{\circ} \mathrm{E}\), dip \(57^{\circ} \mathrm{SE}\); and \(\mathrm{N} 10^{\circ} \mathrm{W}\), \(\operatorname{dip} 35^{\circ} \mathrm{W}\).
\(\checkmark\)
13.38 (13.48) CAUSEWAY AND GUARDWALL These structures 373,1
were constructed about 1850 as part of a large scale
improvement program. The towing path crosses a former
river channel on a rock causeway; the water in the canal is

25 feet deep at this point. 100 feet southwest of the towing path is a stone guard wall, 15 ft . high, 100 ft . long that blocks off an old channel and protects the canal

5- from flood water. It is built of metagraywacke and schist blocks.

13.40 (13.50) OUTCROP ON TOWING PATH Ledges 250 ft .
: :- south of Lock 15 are formed of metagraywacke with quartzite and schist (Wissahickon Formation). Schistocity strikes \(\mathrm{N} 15^{\circ} \mathrm{E}\); dips \(85^{\circ} \mathrm{SE}\) to vertical. Crenulated quartz veins cut the schist. Joints strike \(N 30^{\circ} \mathrm{E}\), dip \(25^{\circ} \mathrm{SE}\); \(\mathrm{N} 60^{\circ} \mathrm{W}\), dip \(45^{\circ} \mathrm{NE} ; \mathrm{N} 75^{\circ} \mathrm{W}, \operatorname{dip} 60^{\circ} \mathrm{N} ; \mathrm{N} 30^{\circ} \mathrm{W}, \operatorname{dip} 75^{\circ} \mathrm{NE} ; \mathrm{N} 80^{\circ} \mathrm{W}\), vertical; and \(\mathrm{N} 65^{\circ} \mathrm{W}, \operatorname{dip} 54^{\circ} \mathrm{N}\).

\section*{\(V\)}
13.45 (13.55) Lock Lis \(^{\prime}\) Lift \(8 \mathrm{ft} .\), constructed 1829-31.

The locks are built of Seneca red sandstone with some
concrete in upper recess. The upper recess, berm side has
\(\square\)
2: a subrecess with a culvert opening 4 fr . wide, 6 ft . high Cousuvay drunstreamg trek 15 -partial.

\footnotetext{
Buyred bret 15 carnal ixcaraked in rock cut.
}
that formerly conveyed water to the chambers. A timber facing of concrets 15 fy high; cribbing filled with schist boulders. crib dam and concrete spillway, on berm at lower end of lock is 70 ft . long, 15 ft . high and forms a pool on the cop of concerts on burst wall top at ugpu-hmen nurses berm side of the lock. The lockhouse was opposite the Concent in hum was wile unlit gate on bum, upper recess for recharge cu lent. center of lock along the towing path. It was constructed luringoall on towpath, ham side \(=\) achier rubble.
of rubble schist in 1830-31, and was demolished in the J
flood of 1889. A frame lockhouse was built in 1899 just
west of the lock. It burred in the early 1900's and only Rubtle wall on trojuath, schist and mitrgragurache, coursed, 150 pace long upstuam. the base of brick chimney remains. The rock channel of
: the canal was blasted out of Wissahickon metagrawacke and schist between Locks 15 and 16. A masonry wall retains the towing path for 200 ft . upstream of Lock 15. 13.46 (13.56) OUTCROP ON TOWING PATH Wissahickon quartzitic schist forms low ledges, joints strike \(N 80^{\circ} E\), vertical; \(\mathrm{N} 35^{\circ} \mathrm{W}, \operatorname{dip} 45^{\circ} \mathrm{NE}\); and \(\mathrm{N} 60^{\circ} \mathrm{E}\), dip \(85^{\circ} \mathrm{SE}\).
13.60 (13.68) OUTCROP ON TOWING PATH 100 ft . south of

Lock 16, dense gray Wissahickon metagraywacke with biotite
and quartz grains up to \(1 / 16\) inch size forms low ledges.

Small quartz grains cut the graywacke. Prominent joints strike \(\mathrm{N}-\mathrm{S}, \operatorname{dip} 82 \mathrm{O}^{\circ} \mathrm{W}\); and \(\mathrm{N} 80^{\circ} \mathrm{W}\), \(\operatorname{dip} 70^{\circ} \mathrm{N}\).
13.62 (13.69) LOCK 168 ft . lift, constructed 1829-31.

The lock is built of cut Seneca red sandstone. The upper Inlet gat \(t\) surcharge culent on towpath, tum side. Anent cap placed on recess contains subrecesses and culverts connecting with the chamber. A log crib dam with a concrete spillway at the lower end of the lock forms a pool on the berm. The lock gates were destroyed June 27, 1863 in a Confederate raid led by Col. J.E.B. Stuart. Lockhouse no. 10, built !-
about 1837 is on the berm and is a whitewashed masonry

19 13.77. (13.82) STOP GATE AND GUARD WALL These structures 20- Bland wings on turn, upethen and dansthem aide, \(25 / 4 \cdot\) hang.
were built in 1852 to block flood waters from the Widewater 2? Stairs on ujetuam side g wall or towpath. Rubble surtmunt face upothanand
section of the canal. The abutments of the gate are hammer-
dressed metagraywacke, schist, and seneca red sandstone.
24
25- The concrete wall on the berm, 20 ft. long, fills a former

breach in a masonry wall that connects with a rock ledge. The area over the canal prism was formerly spanned by a machinery house which was destroyed in the flood of 1889. A single heavy timber which spanned the canal after 1889 was used to raise and lower stop planks that fitted into notches in abutments. The guard bank on the river side of + South (0.36 mi .) towing path is 15 ft . high and extends west 500 ft It is faced with metagraywacke and schist rubble. The trail on Bear Island rejoins the towing path 100 ft . north of stop gate. 376.35 Rachrad sails on Vowpath side canal between bloroff cubit + Stop Gate 13.89 (13.93) HIGHWALL ALONG TOWING PATH Above the stop 376.37
gate the canal is constructed along the edge of a high river channel with the towing path on a dry masonry wall \(20-\) embankment. Wissahickon metagraywacke cropping out on the berm has vertical cleavage trending \(N 10^{\circ} \mathrm{E}\) and prominent joints at right angles to the cleavage, dipping \(60^{\circ} \mathrm{N}\).
-
13.95-13.97 (13.98-14.00) OUTCROP ON BERM A Cllff on the 376.45
berm is formed of Wissanickon metagraywacke and schist.

13.97 (14.00) LOCK 178 ft . 11 ft , constructed 1829-30.

The facing of the lock is hammer-dressed Seneca red sandstone with a backing of granite rubble. The graded flume,

70 ft . from lock on berm, has a stone over fall at its
:- head. The lockhouse, built in 1898 , was a frame structure on the berm. It was destroyed in early 1900's. A lock
shanty was on the lower berm about 1910.
MPI4才 376. y' \(^{\prime}\)
14.02 (14.05) PATH ON RIVER SIDE OF TOWING PATH This
path leads to Great Falls and is a self-guiding geologic
tour with descriptive plaques (Reed Naknal brijn betwen treks 17.18 .
\(14.07 \underset{376.64}{ }(14.10)\) LOCK 18 Lift \(8 \mathrm{ft.}\), constructed 1829-30.
The lock is faced with hammer-dressed Seneca red sandstone Wall on trowgeth, schist and metngraywacks for 100 fl . Hhw lock. with a backing of granite rubble; some gray limestone blocks and bricks were used in repairs. A culvert under the tow-
ing path, 15 ft . downstream from lock, was used as a feeder from 1831 to 1837. Water was conveyed from the river channel adjacent to the canal across which \& low diversion dam was constructed 100 ft . north of lock. The feeder ditch was along side the towing path. The culvert arch has a span of 6 ft . and a rise of \(3 \mathrm{ft}\). , with 12 ringstones and keystone in the face of the arch. The water level of canal covers \({ }_{A}\) culvert to top of arch. This feeder was abandoned in 1837 after a freshet damaged the small diversion dam. Ruins of lockhouse no. 11 are on berm. It was constructed in 1830-31 of coursed schist rubble and burnt in 1930. The graded flume on the berm is in front of 10 ft. from the lect.
lockhouse. Concrete fish sluices in the river channel
between Locks 18 and 19 were constructed between
and but the plan to provide for a complete system of
fish ladders was not finished.
376.70 V
14.15 (14.20) LOCK 19 Lift \(9 \mathrm{ft} .\), constructed 1829-30.
```

The facing of the lock is hammer-dressed seneca red sand-
stone with granite rubble backing; limestone blocks and
bricks were used in repairs. Smooth grooves, up to 3 inches
Ly*untore
15024.1832-
deep, cut into the sandstone by towing ropes are on the 88ys./834
lock on berm, has a 3 ft. masonry and concrete overfall at
the lower end. A lock shanty was formerly at the upper
recess on the berm. At the south end of the lock on the
berm, there are low ledges of Wissahickon metagraywacke and
schist; similar ledges are in the river channel adjacent
to the towing path.
V
14.26 (14.30) LOCK 20 GREAT FALLS Lift 8 ft., construct-
376.80
ed 1829-30. The facing is hammer-dressed Seneca red sand-
I lume cubure mosith 16/p.fhom loone and of lork
*2-stone into which prominent rope grooves have been cut at
the lower end of lock. A pivot bridge formerly crossed
the lock. It was destroyed in the Civil War, but was re-
puilt and used until 1924. The flume is in a culvert on

```

```

        lepgen sud ucuss on tum side, chank shapt for brom gots guneny t Nwenaye culvort.
    the berm 15 ft . from lock and is controlled by a concrete frame weir with a screw gate at the head of the culvert. The tavern on the berm side, formerly the crommelin House, was built between 1828 and 1830 as lockhouse no. 12 to serve locks 19 and 20. It was enlarged in 1830 and established as a tavern in June 1831. Two-story brick wings were added in 1831-32. In later years it served as 10-

1) a feed store and as a private club from 1913 to 1925. It
:2 was rebuilt in 1938 and open as a museum on July 12, 1951.
is A large bench of cut, Seneca red sandstone is between the lock and museum. Northeast of the museum the Washington

Aqueduct building is constructed of Seneca red sandstone.

Other outbuildings near the museum were former shops and
warehouses of the canal company.
$\checkmark \quad \checkmark$
14.27 (14.31) OVERFALL AND WASTE WEIR 50 ft . north of Orufall byes at head g tick 20, $66 \mathrm{f}^{5}$. lng. thatwall luring curses troputh at nock 20 is an overfill 100 ft . long with a revetment of metagraywacke, built in 1830. A concrete frame waste weir,

4 gates with drop boards and paddle gates at the base, is at the north end of the overfall. It was constructed 1882-
83. The Great Falls Dam of Washington Aqueduct extends 376.85 = dam
diagonally across river at this point and diverts water for the supply of the District of Columbia and parts of Virgin1a. The first dam, a short, riprap wing dam, was constructed in 1853. It was enlarged and extended across the Maryland channel to Conns Island in 1864-67. A masonry dam, $7 \frac{1}{2} \mathrm{ft}$. high and extending $2,800 \mathrm{ft}$. across the river to Virginia was built in $1884-1886$. In 1896 it was raised to a height of 10 ft . The dam is cut Seneca gray sandstone
14.29 (14.33) GRANITE BLOCKS A pile of cut granite blocks 376,94
on the river side of the towing path are extra stone from Footbridge 377,00
i: construction of Great Falls Dam. The granite is gray with
377.22 and (ugethem) parking bot; Whay for canose, tike mentel
also in the pile.
MPI5. 377.54
$15.22(15.25)$ CULVERT 21 COOL SPRTNG BRANGH Constructed
377.76
1830. The circular arch has an 8 ft . span and a rise of

4 ft . The face of the arch is cut Seneca red sandstone.

The spandrels and parapet are coursed Wissahickon meta-
graywacke and schist. The culvert is filled to the top of the arch (1971). Woigs shaiget.
15.33-15.42 (15.36-15.45) OUTCROP ON BERM Wissahickon
377.85
metagraywacke and schist form low ledges on the berm.
15.74 (15.76) REVETMENT A low wall of schist rubble is $378.61^{?}$
along towing path. It is the probable site of an old over-
fall.

```
15.86 (15.86) CULYERT 22 Constructed 1829-31. The face
 378,39/378.70
 (mileage adjuermact)
 of the semicircular arch is cut Seneca red sandstone. The
 arch has an 8 ft. span and a 4 ft. ilse, with 16 ringstones
 and a keystone. The parapet and coping are mainly coursed,
```

schist rubble. The culvert is partially filled, only 12 ringstones show (1971). Wings straight.
15.95 (15.95) OUTCROP ON BERM Low ledges and rounded spurs of Wissahickon schist are on the berm.

$$
\begin{gathered}
15.98(15.98) \xrightarrow{378.84}
\end{gathered}
$$

ing path is a small building faced with quartzitic schist that houses the pumps for the Rockville water supply. MP16-378,85
$16.20(16.20)$ OUTCROP ON BERM LOw ledges of Wissahickon
$379.05-379.10$. quartzitic schist line the berm. Schistocity strikes $N 25^{\circ} \mathrm{E}$, dips $70^{\circ}$ ESE; fractures are at right angles to the schistocity.
378.92 Ind erasing canal; hoseyati-mot safe.
16. $30(16.30)$ 30-FT. CLIFF ON BERM Wissahickon metagrayodomitu adjustment
wacke is exposed with schistocity striking $N 5^{\circ} \mathrm{E}$, dipping
$\Rightarrow \quad 60^{\circ} \mathrm{E}$.

$=$	$\begin{array}{c}4 \\ \end{array} \quad \begin{array}{c}6.48-16.62 \\ 379.33\end{array}$

(16.42-16.62) OUTCROP ON BERM Wissahickon
metagraywacke with schistocity striking N $5^{\circ} \mathrm{E}$, dipping $75^{\circ} \mathrm{E}$, crops out in a ledge 40 ft. high. Prominent joints strike $\mathrm{N} 55^{\circ} \mathrm{W}$, dip $75^{\circ} \mathrm{SW}$. The outcrop continues intermittently to Swains Lock.
$16.62(16.62)$ LOCK 21, SWAINS (OAK SPRING) LOCK 8 ft . lift, constructed 1829-31. The lock is built of hammerdressed, Seneca red sandstone. It collapsed and was re-

Fractal riding holowtint 21. built in 1861. Lockhouse no. 13, on berm, built 1832, is coursed rubble schist and metagraywacke, whitewashed. The in front of hokRnese 20 fl . from lock flume is in a concrete culvert, between the lock and the lockhouse with a concrete-framed, board insert gate at its pile of cortes 5017 . dounstuam = cit finder?- dinnsion for flume, nt a finder. head. Culvert 23 formerly carried a stream under the canal just above the lock but was washed out in 1831. A concrete frame, single gate waste weir with insert boards is now at the site of the culvert.

 16.74 (16.74) OVERFALL (MULE DRINK) A rubble covered

# 16088 sty cubit $24 \frac{1}{2}$ ? <br> spillway, 18 ft . long, with schist and gneiss blocks, some 379.64 <br> 45f1. wide, affection width 20 fk . <br> red sandstone, is 600 ft . upstream from Swains Lock. Swains Ind: phone, bike and canor Natal, tiles, Nefrebements. <br> 16.77 (16.77) OUTCROP ON BERM Garnet-staurolite-mica 

schist form low spurs along the berm bank.
16.91 (16.91) OUTCROP ON BERM A low ledge contains
379.81 garnet-staurolite-mica schist which strikes $N 5^{\circ} \mathrm{E}$, dips $40^{\circ} \mathrm{E}$.

1. The outcrop continues as low ledges and spurs for 0.1 mile.
17.00 (17.00) MILEPOST The milestone is coarse grained 379,88
Aquia sandstone, now deeply weathered. Only stub shows, $1 / 28$. downstream of mun $M P$.
$17.36-17.54(17.36-17.54)$
$386.35^{5}$ FILTRATION PLANT The water
intake and filtration plant of the Washington Surburban Intake on surusich

Sanitation Commission is on the berm. The buildings are
s:- faced with quartzitic schist. The plant is the main source
of water for the Maryland suburbs of Washington.
:
${ }^{3}$
17.64 (17.64) PIPELINE CROSSING Three 42-inch lines of 380.46
the Transcontinental Gas Pipeline Co., bringing gas from Louisiana via Alabama, the Carolinas and Virginia (Charlottesville) cross the canal. Clearings along the pipeline 5- show the high flood plain, 100 yards wide and 20 ft . above river, on north; to south in river, Watkins Island, with 8 a rock cove covered by silt and sand rises 20 to 25 ft . 9 above the river.
$17.78(17.78)$ PIPELINE CROSSING of the Atlantic Seaboard
380,100 Gas Pipeline, Columbia Gas System cross under the canal. Two 26-inch lines from Southwest Virginia and Kentucky via : Harrisonburg, Virginia.
$17.80(17.80)$ CULVERT 25 WATTS BRANCH Constructed 1830. 380.62

The semicircular arch, has a span of 20 ft. , with a 10 ft . (24anow)
rise. 28 ringstones, and a keystone are in the face of the
arch. The face stones of the arch and coping are cut $\therefore$ 9 Crang are ${ }_{26}$ Seneca gray, fine-grained sandstone. The parapet is $\chi^{4}$ ft.

```
high. The spandrels and parapet are coursed Seneca red
sandstone and schist rubble.
17.80-17.93 (17.80-17.93) BOTTOM LANDS Alluvial flats
are on the berm along a meander in Watts Branch.
Berm on smenkment to 380.75
 MPI8 380,90
17.93-1810 (17.93-18.10) OUTCROPS ON BERM Wissahickon
chlorite-biotite-muscovite schist with schistocity striking
N30
18.10 (18.10) OUTCROP ON BERM Wissahickon chlorite-
biotite-muscovite schist crops out in a ledge 100 ft. high.
```

A cave opening is at the east end of the outcrop.
18.16 (18.16) OUTCROP ON BERM Wissahickon chlorite-
biotite-muscovite schist with schistocity striking $N 30^{\circ} E$,
dipping $36^{\circ} \mathrm{SE}$, forms a cliff 100 ft . high.
18.21 (18.21) SEWER VENT ON BERM This structure is faced
with quartzitic schist. It is a part of the Dulles inter-
ceptor sewer.
18.30 (18.30) OUTCROP ON BERM Wissahickon quartz- biotite 381.12
schist with beds of fine grained metagraywacke crops out in
a low ledge. Schistocity strikes $\mathrm{N} 30^{\circ} \mathrm{E}$, dips $37^{\circ}$ SE., forums
promunt ledge. 18.41 (18.41) SEWER VENT ON BERM The vent is faced with 381,24
gray quartzitic schist.
18.51 (18.51) OUTCROP ON BERM Wissahickon quartz-biotite 381,32
schist with knots of chlorite-muscovite forms a ledge.
:- Schistocity strikes $N 20^{\circ} \mathrm{E}$, dips $45^{\circ} \mathrm{ESE}$; similar outcrops
in low ledges continue to (18.70).
381.46-outcirp
18.58 (18.58) SEWER VENT ON BERM The vent is faced with
gray quartzitic schist.
$\therefore 18.72$ (18.72) PUMPING STATION ON BERM The Dulles Interceptor sewer crosses the river from Virginia at this point. 2: The pumping station is faced with gray quartzitic schist.

18.88-18.97 (18.88-18.97) OUTCROPS ON BERM LOW ledges

False Blockhouse Piont 381.71
bounded by a prominent bluff 70 ft . high at west end and
a cliff 25 ft . high at east end are formed of Wissahickon metagraywacke, phyllite, and mica schist. Large clusters (porphyroblasts) of biotite are in the schist. Schistocity strikes $\mathrm{N} 10^{\circ} \mathrm{E}$, and dips $40^{\circ} \mathrm{E}$ at east end, $20^{\circ} \mathrm{E}$ at west end; prominent joints strike $N 40^{\circ} \mathrm{W}$, dip $82^{\circ} \mathrm{NE}, \mathrm{N} 70^{\circ} \mathrm{W}$, dip $87^{\circ}$ SW to vertical. The latter set of joints form a prom"lppin sod- schutrity dips $5^{\circ}$ away fram canal; appean neasly hougorkt;
 outcrop. Wall on sius side of trwpeth; silx cooved.

## MP19 381.95

19.10 (1910) OUTCROP ON BERM Low ledges of Wissahickon metagraywacke, phyllite, and mica schist crop out on the berm.
$19.36(19.36)$ SEWER VENT ON BERM The vent is faced with
382.25 gray quartzitic schist.
19.42-19.55 (19.42-19.55) OUTCROPS ON BERM Ledges and a
bluff 40 ft. high at west end of the outcrop are formed of Wissahickon metagraywacke and quartz-mica schist. Schisto-$22^{\circ}-33^{\circ}$
city strikes $N-S$, dips $42^{\circ} \mathrm{E}$; joints at the east end of the outcrop strike $\mathrm{N} 15^{\circ} \mathrm{W}$, dip $80^{\circ} \mathrm{W}$; at the west end the joints strike $N 65^{\circ} \mathrm{W}$, dip vertical; $\mathrm{N} 80^{\circ} \mathrm{W}$, dip $68^{\circ} \mathrm{SSW}, \mathrm{N}-\mathrm{S}$, dip $60^{\circ}$ W. 30 ft -high; thick bes

LOCK 22 PENNYFIELD LOCK 7 ft . 1 fft , constructed 1829-31. The facing is cut Seneca red sand-
 stone with a concrete coping on the east end. A red sand-
stone and metagraywacke rubble revetment is on the east of
if the lock. Lockhouse no. 14, constructed in 1832 , is on the towing path side of the lock. It is built of coursed gray
:: schist, quartzite, and fine-grained, dark gray to black metagraywacke rubble, white washed. It was seriously damaged by fire in 1935. A graded fiume is on the berm, $4 / 4$. dug $\times 8 / 4 \cdot \operatorname{mide}$; dry wall of schick subtle. 40 ft. from lock, with a 2-gate, concrete frame weir at the
head of the flume. A waste weir is 100 ft . west of the A waste weir is 100 ft, west of the
in formal overface on heachalis map at 19.81 Muhede
by wants win.
lock. It is a concrete frame with 3 drop board gates, 2 of which have paddle gates at the base. A large block of - gray Wissahickon quartz-mica schist with quartz veinlets is on the northewest side of the lockhouse; quartz layers $1 / 8$ s to $\frac{1}{4}$ inch thick and dense, thin layers of mica are prominent. The rock has a greenish gray sheen on the surface and is similar to boulders on the berm above the lock. A flood plain 20-25 ft . above river extends along the Potomac west of the lock. Brown, clayey silt forms the flood plain and 10 ft . of the silt is exposed in the creek bed at the lock. 382.82 - moonong haix $40081 \cdot$ long $\times 40 f y$ arde, 0.61 mile sact $g$ culout 30 . 19.95382 .88 CUVERT 30 MUDDY BRANCH Constructed 1830. Rerbuilt
The coping and semicircular arch are cut seneca red sandstone. The span of the arch is 16 ft . with an 8 . ft. rise. show
$\therefore 26$ ringstones and a keystone are in the face of the arch. 3/4 high The springing line is at water level. The parapet and coping 24

Cofinginedendatroc, 8 in -high are 5 ft . high. The spandrels, flare ${ }^{\text {wings }}{ }_{a}$ and parapet are gus and that Cntaukment $10 f t$.ebon crying coursed dark gray, fine grained metagraywacke. Extensive breaches occurred in 1830 and 1831 in the culvert. The upstream side of the culvert was badly damaged from a breach in 1835. The site of John L. DuFiefs' wharf is just east of thepulvert. = basin

MP20-382.95
20.00

EAST END OF DIERSONS WILDLIFE MANAGEMENT

AREA, This wildlife area is one of several along the cancel maintained by the Maryland Game and Inland Fisheries Department. $383,00 \cdot 383,22 \quad 8 \mathrm{~m} \cdot$ pergiline for water pumped from siuanto vildiy area.
if $\quad 383.40$. End entankencent on tram .
20.75383 .70 PIPELINE CROSSING A gas transmission
lIne of the Colonial Pipeline Co. crosses beneath the
canal and follows thewest bank of Lick Run.
$36^{\prime \prime}+32^{\prime \prime}$ lines, installed 1963. Extend from July to castors sestorard $5,100 \mathrm{mi}$ Rumnigtor, $V a$, to 'Jaithusbuy, Ind.
20.99-21.22 (20.99-21.22). BLOCKHOUSE POINT Ledges, 150 383. 80. Tain trogeth wall an romaic
ft. high on berm, are formed of gray-green Wissahickon
chlorite-sericite schist. Schistocity strikes $N 5^{\circ} \mathrm{W}$, dips

```
25%E to 450}\textrm{E}\mathrm{ . Opposite Milepost 21 a 50-ft. ledge on the
berm contains highly fractured schist with schistocity
striking N5 ' W, and dipping 15 % and cut by joints striking
N45}\mp@subsup{}{}{\circ}\textrm{E}\mathrm{ , vertical; N}1\mp@subsup{5}{}{\circ}\textrm{E}\mathrm{ , vertical. A flat swampy area
(21.00-21.14) lies in front of the ledges. West of the
swampy area (21.14) are low ledges of gray Wissahickon
 schist with prominent fractures. Marks of drill holes,
 5 ft. apart were made in 1830 in the face of the ledges.
 At the west end of Blockhouse Point a narrow ledge of
 Wissahickon fine-grained schist extends upwards 150 feet
 The schist contains sheared and slickensided quartz veins.
 Ledges of schist are in the river at the west end of
```

    Blockhouse Point. The wall along the river side of the
        towing path is gray schist rubble. - Extonds to 21,8 End 384,22
        Sketch of Blockhouse Point
        Drawing \(4^{\prime \prime} h \times 8^{\prime \prime} w\) for reduction to \(2^{\prime \prime} \times 4^{\prime \prime}\)
            21.27 384.24 OUTCROP ON BERM Wissahickon quartz-mica
    schist and phyllite forms a 15-ft. ledge. Schistocity strikes $\mathrm{N} 5^{\circ} \mathrm{E}$, dips $10^{\circ} \mathrm{E}$.
21. 31384.28 OUTCROP ON BERM Gray Wissahickon quartz mica schist and phyllite with prominent fractures is exposed in a 25 ft . 1edge. Schistocity strikes $\mathrm{N} 15^{\circ} \mathrm{E}$, dips $28^{\circ}$ E. A revetment wall, $10-15 \mathrm{ft}$. high on the river side of towing path is constructed mainly of schist rubble.
21.38384 .35 OUTCROP ON BERM A bluff 150 ft . high, behind low ledges, is formed of deeply weathered and fractured Wissahickon chlorite-sericite phyllite and mica schist. Stuk $N 20 E, 30^{\circ}$ ESE dip, drill manks 2 in in diamtn.
$21.40 \quad 384.36$ SEWER VENT AND PUMP ON BERM The structure Inw schist helyu brlaw wally canal, atuke $N 20^{\circ} \mathrm{E} \times 18^{\circ} \mathrm{ESE}$ dip.
is faced with gray quartzitic schist. An outcrop of deeply weathered Wissahickon quartz mica schist and chloritesericite phyllite, is in a ledge on the berm. Waltonds at 384,40
22.00384 .90 MILEPOST This is one of the original mile-
posts. It is located 10 ft . from the river side of the towing path and is made of cut, coarse-grained Aquia sandstone.
22.06 CULVERT33 This culvert was constructed
in 1830 and had a 6 ft. span. After the culvert was washed $\varepsilon$ out in September 1868 it was not rebuilt and the stream 1. was diverted into the canal.
$\therefore 22.09385 .00$ LOCK23 VIOLETS LOCK $8 \frac{1}{2}$ ft. lIft, construct3 wicker gates in such inlet bran
ed 1829-31. The face of the lock is mainly cut Seneca red

15- sandstone with some concrete in the chamber on the south :
side at the lower end of lock. The upper recess walls of

:* red sandstone and limestone are 3 tiers higher than the rest of the lock. The coping is limestone. The breast wall
$\therefore$ is at the lower end of the upper recess. Timber and concrete
are in the floor in the upper recess. A mason's mark
$\therefore$ is in the center of the north wall of the chamber, 4 tiers concert facing in area g eypen vases mites sill. Intis goon trechayg culertst

from the top. A raid on June 27,1863 by Col. J.E.B. Stuart wrecked the lock gates. The lock was seriously damaged in the flood of 1877. A pivot bridge was built over the lock in 1836.

The Guard (Inlet) lock and feeder are faced with hammer-dressed Seneca red sandstone. Some schist is in the abutments of the old towing path bridge at east end of the lock on top of the coping. A few blocks of gray Seneca sandstone and trimmed metagraywacke are in the walls of the lock. The coping is hammer-dressed red sandstone. The original cost of the guard (inlet) lock was $\$ 7,296$ and the feeder was $\$ 1,916$. Lockhouse no. 15, constructed 1831-32, was a frame building formerly located on the berm. It burnt in the $1930^{\circ} \mathrm{s}$. The canal was opened from Little Falls (Lock 5) to Violets Lock on November 13, 1830. Rushville community, just north of Lock 23 prospered in the early days of the canal. It was named for Richard

Bush of Pennsylvania, Secretary of the Treasury of the United States $1824-28$ who aided in obtaining foreign financing for $C$ \& 0 Canal project in the early $1830^{\circ}$ s.
22.20

DAM NO. 2 SENECA DAM 2,500 ft. long, conDam furds to inliy trek, concete durneco wall $4 / 4$. wide $\times 4 / 4$. high structdd 1829-31. This was originally an arch stone dam founded on bedrock. It was 4 ft . high, backing a pool 4 to 5 miles long. The original cost of dam was $\$ 28,793$. The dam was breached many times and was filled with stone, gravel, and brush. It was rebuilt extensively in 1867 but much of the dam was carried away by ice in 1868 and in 1873. It was rebuilt in 1877. At present it is little more than gentle rapids with weeds covering part of it. 22.34 - Wrast wrir tubxty NPS - ryplaces informal anflow the was ohnon on thackell's map. 385.25 Concuk, 3goth, all trand masets 1471; rygur angls coning TVT 22.41385 .30 OLD CHIMNEY $O$ the river side of the tow-
ing path in picnic grounds is a chimney constructed of
rounded river cobbles, primarily sandstone, and some red
sandstone. A broad, high flood plain is on the berm
between Violets Lock and Seneca．It is 20 ft ．above the river grading northwards into a low terrace， 60 ft ．above the river．

Boat basin and ste docks 0.4 miles to east．Basin 386,16 to 386.68 22.76 LOCK 24 RILEY LOCK $8 \frac{1}{2} \mathrm{ft}$ ．lift，construct－ ed 1830－31 as an integral part of Aqueduct 1．The lock is faced with cut Seneca red sandstone．The upper recess connects with the trunk of the Seneca Aqueduct．Mason＇s marks are prominent on the berm side of chamber $T \mathbb{\chi}+$ ． Lockhouse no．10，on berm，was constructed 1829－30．It is built of cut and coursed rubble Seneca red sandstone， 1立 stories high．Sita basin a Nasty hill on from casio lock． Lock 23－Lock 24－berm on low embankment．
auto odometer Sencen： 92973 $F_{\text {all }} C h=92948$
$22.80 \quad 385,70$ AQUEDUCT NO 1 SENECA AQUEDUCT Constructed Inlet culouts for nechayg th ak 24 ox tom－bowel in with stone
1828－32．The face of the Aqueduct is cut Seneca red sand－ stone．The aqueduct is 113 ft ．long between abutments and has 3 segmental arches，each with 33 ft ． $\operatorname{span}$ and $7 \frac{1}{2} \mathrm{ft}$ ． rise． 28 ringstones and keystone are in each arch，with
the springing line at the level of the creek. The piers 385.82
are7 ft. thick. The coping and parapet are 7 ft. high
Luasts wirr - on berm - 2 paddee gates + 1 dirptrand gate - at head g agueduct with the coping 18 ft . above the level of the creek. The canal trunk is 15 ft . wide. Simple rectangular pilasters are on the towing path side of the piers and abutments. Remnants of the railing on the wings has 2 heights of iron balusters. Seneca red sandstone end posts are at end of wings.

Diagram- railing and corner post


Mason's marks are on the berm side at the west end of the trunk $\mp \& \rightarrow-i$ and on the berm side at the east end of the trunk $\& \Vdash_{X} \leftarrow \rightarrow$. In a raid by Col. J.E. B. Stuart, June 27, 1863, a boat was burnt in the aqueduct. A timber trunk was placed in the aqueduct in 1873, because the masonry walls were 9 inches out of plumb and the arch was supported by the inner liner only. Some of the ring-
stones were crushed. The aqueduct was taken down and re-
built in $1873-74$ with iron braces placed to retain the
stonework. The west arch fell september 1971), being
carried out by water backed-up in a flood of seneca Creek.
The berm parapet and coping remained intact over west arch

but were removed when temporary repairs were made. A 3 $\quad$\begin{tabular}{l}
gate, concrete frame, waste weir is on the berm wing at the <br>

west end of the aqueduct. | $386.15-$ Wall |
| :--- |
| $385.85-386.15$ Basin |
| MP23-385.85. |

\end{tabular}

SENECA TO HARPERS FERRY
22.84 (22.84) SENECA QUARRIES A large swampy area west of the aqueduct extending west to 23.13 is a former canal basin. Quarries on the north side of the basin were
opened about 1774 and the stone was used in the Potomac Company canal locks on the Virginia side of Great Falls in 1797. Along the canal there are six major quarries- 1) John P.C. Peter Quarry, at the margin of the canal near the mouth of Seneca creek adjacent to the stone cutting mill

using granite instead of sandstone. Walls of red sandstone,
ruins of the cutting mill built in 1873 to replace one
built in 1850 are at the northeast corner of the basin.

Water from the canal supplied power to the mill. The mill
tail race is on southeast side of mill. Stone was hauled
from the quarries to the mill on a narrow gauge [railroad]
the Seneca Sandstone Company un 1850 powered by mules. The individual quarries were sold to $\lambda$ and resold to,
the Potomac Red Sandstone Company in 1867. This company
was reorganized in 1872 as the Maryland Freestone Mining
and Manufacturing Company. Operation of the Maryland Free-
stone quarry was suspended in 1874 for 9 years because of
litigation with the Canal Company over water power. It
was reorganized in 1883 and closed in 1889 because of
destruction of canal by flood. In 1891 it was purchased by

George Mann of Baltimore and reorganized as the Seneca
$\square$
$\therefore$ Stone Company. The Canal Company installed a Blake $15 \times 10$ -
${ }^{24}$ inch crusher at the Peters (Bull Bun) Quarry in 1874 to
provide crushed stone for the towing path.
The rock at the quarries dips $15^{\circ}$ to $20^{\circ}$ Sw. Workable beds were from 18 inches to 7 ft . thick; they varied in color from gray to red, texture and hardness and shaly beds were mixed with the sandstone. Two sets of joints, one perpendicular to the dip and normal to the strike, the other vertical and parallel to strike aided in quarrying. The joints were spaced a few inches to several feet. Fine grained sandstone was used most. It was soft, easily cut and carved in quarrying but hardened after exposure. The rock is dominantly quartz with feldspar (microcline and and plagioclase) and muscovite (mica); grains are not interlocked and the cement is ferringinous.

Map showing location of quarries arait $8^{\prime \prime} h \times 10^{\prime \prime} w$; print $3^{\text {nh }} \times 4^{\text {" }} \mathrm{F}$. 23.31 386.30 CULVERT 35 BULE RUN Constructed 1829-30, Sisk, 12 ft . Loxg acriscanal, $8 / 4 \mathrm{l}$ uide oun areh in prism. rebuilt August, 1863. The coping and arch are cut Seneca Arraiger wings
red sandstone. The segmental arch has an 8 ft . span and 4
ft. rise. The face contains 18 ringstones and a keystone with the springing line at water level. The parapet and coping are $1 \frac{1}{2} \mathrm{ft}$. high. Spandrels and the parapet are coursed Seneca red sandstone rubble. The wall on the berm of the canal extending east to basin, built of coursed red sanastone rubble, supported a race to the stone cutting mill. An old grist mill was on the west side of the culvert on the berm. The Govermment quarry is on the east side of the stream, 100 yds. north of the canal. Peters Quarry is on the west side adjacent to the canal. Sugarland Flats, a prominent terrace 20 to 60 ft . above the Potomac River is on the Virginia shore to the south. 386.65 . outerop, College geeary? Conknues to 386.68 . J J 23.32-23.81 OUTCROP ON BERM Red arkosic sand-
the beds is $\mathrm{N} 18^{\circ} \mathrm{E}$, dip $8^{\circ} \mathrm{NNW}$ at east, $12^{\circ} \mathrm{NNW}$ at west. 386.75-386.80 Outcrop
23.91386 .90 CULVERT 37 BEAVERDAM RUN Constructed

1831-32. The segmental arch is cut Seneca red sandstone with a span of 12 ft . and a rise of $5^{5} \mathrm{ft}$. $10^{2}$ ringtones
and a keystone are in the face of the arch with the spring-
ing line at water level. The parapet is 2 ft . high. Span-
drels, wings and parapet are coursed Seneca red sandstone Straight wings rubble, with some dressed blocks. The culvert was badly damaged in the flood of September 15,1843 and was torn down and rebuilt. It was rebuilt in 1863 again after the berm side of the arch fractured. In September, 1971 a freshet on Bull fun breached the berm side of the culvert. A wooded flat (high flood plain) is on the berm west of the culvert, 10 to 20 ft . below the level of the towing path and 8 to 12 ft . above river level. A stop gate (built 1835) was formerly west of the culvert but there Burn on enterkmaxt Braumbam t. ? Canal wide fr 500 gr. W low Breundam. are no remains of it. U,S. quant on cast. MP 24-386.98 MP 25. 387.95
24.94 informal anton 100 ff . Sing. Ends 33 paces



388,20-388,22. Anfrimal ounferw 100 DV. long, surtment on mun aster troputh. 388.25 burn sutextinutit ends.
25.31388 .25 PUMP This is the source of water for spray
irrigation used on the open meadow to north. Alluvial soil
on the meadow is dark brown, fine sandy silt deposited from
high floods of the river.
389.20 and ambenement on tum
389.35 Arocope in H.B.O
26.71 ( 390.05 ) CULVERT 38 HORSEPEN BRANCH Constructed

1830-32. The coping and arch are cut Seneca red sandstone. The segmental arch with 12 ft . span and 6 ft . rise has 24 (22 show)

Odometer adjustinant? 388.78: 389,12
ringstones and a keystone in the face. The springing line
is at water level. The parapet and coping are 2 ft . high. $10 / x$. Sertenterant atro cooing.
Spandrels, wings and the parapet are coursed Seneca red
 sandstone rubble. The arch was breached in the west quarter
in priam bum face manning out.
in the center of the canal ${ }_{1}$ (1971). MP 27 - 390.28 27,11-Culugt (Barman)? - near ft, hide. Syearme Landing pearling: 390.50 27.49-28.40

MOUND ON RIVER SIDE TOWING PATH

The material in the mound was excavated from the canal and

Is pebbly to cobbly brown sandy silt with cobbles up to 1
ft. size. The cobbles are subrounded, mainly gray and

White quartzitic sandstone; some pebbles are dark red sandstone. The material is typical of the low river terrace in
which the canal is excavated.
MP 28-391.28
27.91. Cyfurt (Barron) -not sum.

5-27.55-30.09 TERRACE ON BERM A broad, open
flat, 18 to 25 ft . above the river is on the berm. Spring-

Ier irrigation is used in the fields.
28.36 f Rd ss. suns of canal wanhouce, have, manor tain (ital) - not arm, berg

20-28.45 391.72 CULVERT 30 Constructed 1830-32. The
coping and arch are cut Seneca red sandstone with a sugary texture. The semicircular arch, $5_{5}^{4} \mathrm{ft}$. $\operatorname{span}, 2$ 8 rengetmes stow (1975). 6 in . irrigation grape passes through culunt has 10 ringstones and a keystone in the face. The parapet and coping are ${ }^{5} \mathrm{ft}$. high. Spandrels and
white quartzitic gneiss with small red garnets. The culvert
3) 29:29,86392.60 CULVERT 42 CABIN (CHISEL) BRANCH ConstructMP 29.392.28
ed 1831-32. The semicircular arch is cut seneca red sandstone with a 12 ft . span and a 6 ft . rise. 18 ringstones Strait wings; filled om arch, sump
28.80-29.31 canal at terrace hor
392.85. Cleaning arros canal
 and a keystone are in the face. The parapet is 1 ft . high. spendub, eh
Spandrels and the parapet are hammer-dressed red sandstone. 10 fy . curaciden
the stream and the culvert was rebuilt with a 12 ft . span
instead of 6 ft . in 1848-49.
393.15. Culuit 12 fy agpan, 6 ft .siae ?? may afoly to Chicel Branch culvit. /
30.27393 .63 OUTCROP ON BERM Ledges̀ of red sandstone and shale, New Oxford Formation are in an old quarry open-
ing. The sandstone beds are 1 ft . thick in the center of the outcrop, crumbly red shale is on the west with a slight dip to the west. Not isistle in summer

MP.393. 31 - MP 30
30.31-30.50 OUTCROP ON BERM Low bluff form-
ed of red crumbly sandy shale, New Oxford Formation is on
the berm. The dip is slight to the west.
393,80-Chiod branch H.B.O. Kot vicible in pummer
$30.62 \frac{393.95}{399.36}\left(7 / 5 / 75^{\circ}\right)$ EDWARDS FERRY OUTLET LOCK Constructed
1835-37. The two-chamber lock is 150 ft . south of main
25- Woat wir at hoed of hock, 4 boud innti; equeste fills acensog hok

# Edwards Fry to <br> Mercy af. 5 gully 1975 

trunk of carl. It is faced with hammer-dressed, gray andred Seneca red sandstone. The stone is mainly from Lees Coping is fine grained whet t grey sandstone.
Quarry at seneca. The abutment for the towing path bridge
at the head of the lock is 11 ft . high. It is cut Seneca
red sandstone with 3 tiers of rough-trimmed red sandstone at the top. The span is 36 ft . The original bridge, built , 1836; was burnt in July 1864 in a Confederate raid. It was
rebuilt several times afterwards. Basin at hand of hal $175 / 9 \cdot \operatorname{lon}_{\mathrm{y}}(N-s)$.
 crisped comocely ruble in walls. 8 ?
su.'才 (30.86) LOCK 25 EDWARDS FERRY 8 8 ft. lift, con$15394.18=399.60$
:a strutted 1828-33. The face is hammer dressed Seneca red sandstone. The subrecesses in the upper recesses are 3 ft.
wide $x: 4 \frac{1}{2} \mathrm{ft}$. high and were intakes for the old lock
culverts. They are now blocked with rubble. Masons' marks
is concrete. A lower extension to the lock, built in 1880-
81 , is now a low mound of rubble 130 ft . long below the lock
in line with the berm side of the chamber. The towing path
$115 a$


is raised in the area of the extension. This lock is the Western-most one with the old style breast wall at the low-?
er end of the upper recess. The flume is on the berm 25
 ft. from lock and is lined with red and gray sandstone Baric at hued of lock 100 f . long $\times 60 \mathrm{fl}$ urde. Sinh hedge carioca road on lad. rubble. The overfill at the lower end formerly had a upu aide of the concrete frame waste gate at the road crossing. Lockhouse no. 17 is on the side of the towing path and is brick with red and white sandstone, crumbly purple sandstone, green shay sandstone and quartzite in foundation. Foundation
for an old warehouse on the berm below the lock, consists of red and gray sandstonerubble. A 2 story brick store is on the towing path at the east end of the lock. A pivot bridge placed over the lock in 1831 was maintained until 1925. Lock 25 is at the lower end of the 9-mile level.


Lock 25, culvert constructed 1831-32, original waste weir
1834. The waste weir constructed in 1904, is a concrete
frame, 3 gates, 2 of which were formerly paddle gates and 1 gate with insert boards. Wings are coursed rubble of red
and gray Seneca sandstone. The culvert is 20 ft . west of upstream side of euburt arch exposed in canal, nd sandetsme rubble; wing
 the waste weir and has a circular arch of cut seneca red
sandstone with a $6 \mathrm{ft} . \operatorname{span}$ and 3 ft . rise. 12 ringstones
should at base and a keystone are in the face of the arch. $A^{T h e}$ abutment
is 1 ft . high. The parapet is 1 ft . high. Spandrels,
parapet and the wall between the waste weir and the culvert
are coursed seneca red sandstone rubble. Paid with slaboginds.. MP31 399.75
$1014 \cdot$ entaxksuet atrocergeng.
31.22400 .01 BOULDER ON TOWING PATH A rounded, gray,
sugary quartzite boulder, 4 ft . in diameter on the towing
path is part of a terrace deposit. It was apparently
rafted downstream by ice in the Pleistocene.
31.76 400.35 PIPELINE CROSSING Oneline, a 30-inch gas
pipe of the the Atlantic Seaboard Co. from northern west Mors vern across plain to riven and to privet.
Virginia via Winchester passes under the canal and connects
with other Atlantic seaboard lines in Montgomery County
to the north of the canal.
$31.90(31.97) ;$ CULVERT $441 / 2$ BROAD RUN
400.70 1829-32. The culvert was originally 2 stone arches, each Buad Rum. hrom wall 15 fY . from tume
with a 16 ft . span. It was destroyed in a freshet June 29 ,

1846 and a canal boat was swept through the breach. A Oats - Feb. 23,1911 in cmente on NW side of thush (Banon)
timber trunk was completed over breachAugust 1, 1846 but
collapsed in 1847; rebuilt with a permanent trunk in 1847,
which gave way October 23, 1851 after a boat hit the wall.

The trunk was replaced and later rebuilt at intervals of truekogeax $=29 / \mathrm{f}$. lay; hishin 37 ft . long.
10 to 15 years. The present timber trank 16 ft . long on abutments of hammer-dressed purple and red seneca sande stone; some gray sandstone is in the wing walls along the canal trunk. The timber trunk walls are $12 \times 12$ inch timbers tied with iron rods; triangular brace rods are beneath the frame of trunk. The flooring is $12 \times 12$-inch

timbers. Bounded sandstone and quartzite cobbles up to 3
inch diameter from terrace deposits are in the bed of the canal at the culvert.

Sketch of trunk; draft $8^{n^{h}} \times 10^{n w}$; print $3^{h_{n}} \times 4^{W_{n}}$.
MP32 $=400.75 /$ dometer adjustmant $=401.68$
32.50 401.15 CULVERT 45 ABRAMS (ABRAHAMS) BRANCH

Constructed 1830-32. This culvert had a stone arch with a

6 ft. span. Half of the arch collapsed August 19, 1843
and the culvert was eliminated by filling and drainage was
diverted along the berm. The stream, however, enters canal
now and debris fills the prism to within 2 ft . of the tow-
ing path downstream of the old culvert site.
401.55 forthudye across casil, Mr access
32.52401 .68 POWER LINE CROSSING Potomac Electric

Power Company. 2 paraled lines, $3 \times 6$ - causes crackleng in neunty. $\checkmark$
$\therefore 32.62401 .75$ CULVERT 46 Constructed 1830-32. The coping
and arch are cut seneca red sandstone. The circular arch,

8Ahour
4 ft. span, 2 ft. rise, has 10 ringstones and a keystone in the face. The parapet is 3 ft. high. Spandrels and the parapet are coursed red sandstone. A 10 ft. embankment is above the coping. Itwaight wings, Wats forded to within 'ft.g 32.96 (32.96) PIPELINE $X$ - Mopipiline
32.96 Cubit? - Nahn-fased on MP33. No cubit, area is powerlive site MP 33 402.11
33.18-33.36 402.30-402.50 MEADOW ON SOUTH A nigh flood plain, 20 ft . above river level, lies south of the canal. 33.30402 .55 dead liege from file. Fir piers frond of gas drums. 33.50 $\begin{gathered}(33.50) \quad \text { SQUARE DRAIN (CULVERT } 461 / 2 \text { ) Constructed } .58\end{gathered}$ 1831. A 3 x 3 ft . square opening with a 6 ft parapet
crosses under the canal. It is built of Seneca red sandstone and is one of the few square drains remaining on the canal; It is now filled with trash (1971). Kongo. 33.67 Culout - Hahn
33.75-35.00 HIGH FLOOD PLAIN Harrison Island 402.80
in the Potomac River to south is one of several large is-
lands in this section of the Potomac.
${ }^{\text {33.89 }}{ }_{462.93}$ CULVERT 47 Constructed 1831-32. The coping and axch asé cit seneca red sandstone. The circular arch, 86 ft . span, ${ }^{6 /} \mathrm{ft}$. rise, has 12 ringstones and a keystone, Sketch of faces of ringstones- $4 \times 10$, reduce to $1 \frac{1}{2} \times 4$. each with designs cut into the face. The abutment is $\mathbb{4}^{6} \mathrm{ft}$.解 2 ters + copery. high and the parapet and coping are 2 ft . high. Splayed alment at rigat anges $t$ culunt frec, 10 ft long. wings are on the towing path side. Spandrels, parapet and wings are coursed Seneca red sandstone rubble. A \& ft. Sinchde on tropath blind face g cubut, 1014. deamefu $\times 15 \mathrm{fr}$.derp. embankment is above the coping. A hole 25 ft . long, 12 ft .
wide and 12 ft . deep is in the canal bed above a breach in
the arch. Rubble masonry of the arch is exposed in the on souk side
breach $_{\wedge}$ and drainage of the canal from the east flows into the breach. Red shale, New Oxford Formation, is exposed at the base of the abutment on the river side of the towing path. It strikes $\mathrm{N} 60^{\circ} \mathrm{E}$ and dips $10^{\circ} \mathrm{NW}$.

MP 34 - 403.06
34.22403 .26 CULVERT $471 / 2$ Constructed 1831. The circular arch, \& ft. span, 2 玳代 ft. rise, has 4 ringstones High terrace 20 ft . abroc canc; 40 futitabon sine, on brim from Culurit 47, for of cut Seneca red sandstone on the south (downstream) side and 12 rubble stones in the rest of the arch. The abutment is $\$ \mathrm{ft}$. high. The parapet, 4 ft . high is coursed red sandstone rubble. The spandrels are red sandstone rubble on the upstream side and on the downstream side (south) they are rubble to 5 ft . above stream level overlain by large, straight wrongs
irregularly cut red sandstone blocks. A 5 ft . embankment
is above the coping. The berm side of the culvert has
collapsed and the stream enters the canal. Timber footings Dowgeth fore having ont
for the culvert are exposed below the towing path. A 6inch steel pipe for irrigation water passes through the Bum arch cither, 6 tin paras consing $=5 \beta$. culvert. Mot sun 1975 34.4, 403.41 Jute Rum $H B, O$. 48:
34.49 403.49. CULVERT 49 Constructed 1829-31. The coping
and arch are cut Seneca red sandstone. The circular arch,

```
span 4 ft., rise 2 ft., has 10 ringstones and a keystone.
```

adaince－5／7／77
Whites Jury to Pant of Rock，

The abutment is 5 ft ．high and has irregular blocks of red sandstone．The parapet and coping are 3 ft．high．Splay－ Gland， 12 者．long on south，tue on trowath side collapsed om arch and on mike side． ed wing walls are on the south side of the culvert．Spans drels，wing walls and parapet are coursed red sandstone rubble which is partly trimmed in the spandrels．A 10 fit．
 and coping 4 ft high．ho wings 34.61403 .64 SUMP POOL There is a large depression， Frith to moth 1－49 pass sumpsloger char $t$ thogecth；49－58p．nose in midele， $10 \mathrm{ft}^{58-75} \mathrm{f}$ ．on the river side of canal，scoured out of the flood plain．A stone wall along the towing path and a ravine to the river are probably remnants of an old over－
 34．82 403．84 CULVERT 49？Constructed 1830－31．This is the most ornate culvert arch on the canal．The arch and coping are cut seneca red sandstone．The elliptical arch， $10^{\circ} \mathrm{V} \checkmark \checkmark$
12 ft ．span， 3 ft ．rise，has 12 ringstones and an elaborate


weathered deeply. The arch circular, 4 ft . span, 2 ft . rise, has 10 ringstones and a keystone. The parapet and $3 /$ coping are $Z$ ft. high. Spandrels and the parapet are coursed red sandstone rubble. Draught wings ing path face of the culvert. They are 5 ft . high and battered 1 on 2. Ar $\$ 8 \mathrm{ft}$. embankment is above the coping. The culvert was washed out in the summer of 1839 and was

## rebuilt.

35.42 CULVERT 52? 75 ft . south of Whites Ferry

Bridge; constructed 1831-32. The coping and arch are cut

Seneca red sandstone. The arch is semicircular with a 10
 Parapet and coping hon from: $3 / \mathrm{F}$, wing Pend $45^{\circ}$, all since e red sandstone. ft. span and 5 ft . rise. 16 ringstones and a keystone are
in the face. The abutment are 2 ft . high. The parapet
and coping are also 2 ft . high. Spandrels and the parapet 10 f . Embankment abri coring. are coursed red sandstone rubble. The entire culvert under under the canal prism has collapsed and been removed, only
footing stones remain and the arch under the berm and
:5- Part urorden ? 2 flo a butut of stoic curs coach side of old tail. On the ont ede g tavel

35.55 ( 35.71 ) WHITES (CONRADS) FERRY An old iron bridge
$404.50 / 404.80$ o-yomitor adjustment. over canal, 70 ft. span, is a slightly-arched pony (open)

Warren truss. The timber deck is 12 ft . above the water

Level of canal. The abutments are Seneca red sandstone
with large, hammer-dressed faces. The original was a Howe Facilikio: - phone, bight onucks, grannies, gee, brat ramp. Ferry serine to Virginia M, B- Montgomery G. 1865 - B.R. Whit at Condo Firry: Stour of Apintes $I_{\text {kerry. }}$

rubble A culvert 20 ft . to the north is a steel pipe with
 is filled to the top of the arch with only the keystone showing. (1971). The parapet and coping are $f^{\prime} \mathrm{ft}$. high $\times 20 \mathrm{f} \cdot$ lay. Spandrels, parapet and coping are coursed red sandstone
rubble (New oxford Formation). The spandrels on the south side of the towing path face have fallen.

Arced appancitly fallen (1975)
36.61 (36.81) CULVERT 54 Constructed 1831-32. This $405: 82$
culvert has a circular arch, $\underset{\varnothing}{8} \mathrm{ft}$. $\operatorname{span}, \nmid \nmid \mathrm{ft}$. rise, with 12
16 ringstones and a keystone. The face stones are cut

light gray sandstone, New Oxford Formation. The abutment is $31 / 2 \mathrm{ft}$. high. [There is an abrupt 3 ft . drop below the pavement level on the ${ }^{x}$ river side of the culvert.] ButtRebuild 1974-75.
resses are on the wings of the towing path face of the
${ }^{2}$ culvert. Spandrels, parapet and wings are coursed gray 25-


15- The stone culvert was replaced by a ceramic pipe 5 ft . 37.31 (37.55) OUTCROP ON BERM LOW, discontinuous ledges 406.72

20- of New Oxford red sandstone crop out on the berm.
37.48 (37.74) OUTCROP ON BERM LOw ledge of New Oxford

23
red sandstone are on the berm.
24

37.55 (37.80) OUTCROP ON BERM A ledge 30 ft . high of New Oxford red sandstone, strikes $N 5^{\circ} \mathrm{W}$ and dips $15^{\circ} \mathrm{W}$. 37.74 (37.98) OUTCROP ON BERM A ledge 50 ft . high, 100 ft. long of gray limestone conglomerate, New Oxford Formation is on the berm. The rock contains subrounded pebbles and cobbles of dense limestone, and quartzite marble, $1 / 2$ to $31 / 2$ inches in diameter in a matrix of reddish, coarse grained sandstone. The beds are 1 to 15 feet thick. Red sandstone is at the top of the exposure. Boulders of conglomerate are in bed of canal. MP 38 406.90 545,28 Curve to morthicat 545.35 Aryan entrees cana on trim; large delta in prison. 37.92 (38.18) SITE OF OLD QUARRY The hill to east of the canal opposite the Marble Hill Hiker-Biker Overnighter is reputed to be the site of a quarry for "Potomac marble" used in the columns and other parts of the House of Representatives in the U. S. Capitol. The quarry is cited in Geddes and Roberts initial surveys for the canal. 407.12545 .50 Marble Quant H, B.O.
$\begin{array}{cc}38.17 & (38.37) \\ 407.35 & 545.73\end{array}$ CULVERT 60 constructed 1832-33. The coping and arch are cut Seneca red sandstone. The circular arch, span $\$ \mathrm{ft} ., \mathrm{rise} 2 \mathrm{ft} .$, has 10 ringstones and a keystone.

The abutment is 3 ft . high. The parapet and coping are 4
ft. high. The spandrels, parapet, and wing walls are coursed
red sandstone rubble, New Oxford Formation. The abutments L10'/woings $16^{\prime}$ long. $8 / \mathrm{P}$. sutandsent atm coping .
arecfaced with concrete throughout the culvert. Stuam shingly $c$ - odifuous. Small delta in priam on tr p of culet from wash in. Brach in prem over arch; sink $/ 20 f 1 \cdot$ lory $\times 15 \mu \mathrm{~F}$ wide.
$38.21-38.82(38.41-38.74)$
$407.55-407.60+407.65-407.85$
$545.73 .546 .00+546.02-546.35$ 100 ft . high is formed of coarse grained red sandstone, New

Oxford formation that strikes $N 5^{\circ} \mathrm{E}$ and dips $10^{\circ} \mathrm{W}$.
5-- 546.00 Atham enter canal on besom, amie delta in prison, $;$ alow curve $t$ NW.
$\underset{407,90}{38.87} \underset{546.38}{(38.79)}$ CULVERT 63 Constructed 1831-32. The cir-
cular arch is cut sugary gray quartzite from Sugarloaf. The span is 8 ft . with a 4 ft . rise and has 14 ringstones
and a keystone in the face. The parapet and coping are

6 ft . high. The spandrels, wing walls and parapet are coursed red sandstone rubble, New Oxford Formation. The • Ho corine, straight face.

8/7. Entuathouri chore coping.
coping is cut red sandstone. Half of the culvert was
carried away by freshet, August 24,1842 and was rebuilt.
MP 39: 408.15 a 46.55
39.24 (39.17) WASTE WEIR This weir has a concrete frame outer ones
5- with 3 gates for drop boards, $2_{1}$ of which have paddle gates

2oupeth
crushed
stows $t$
MP 38,
bund ix is
saith with
and parcels
of cunsited
stone.
at the base. The waste weir replaced culvert 64 which ${ }^{\text {con }}$ -
structed 1830-32 with a span of 6 ft .
Atrirom enters canal on herm, delta in pisces extrude 300 ft . dounctuam . 100 ft .
upsturan. NW $\checkmark$ between wast wien and lock.
10-39.44 (39.37) LOCK 26 FITCHS, WOODS LOCK 8 ft. Eft, 408.55546 .92
constructed 1830-33. The face of the lock is cut red and
gray sandstone of the New Oxford Formation. The breast
wall is at the upper end of the upper recess, similar to
all locks west cumberland. The upper end of the lock is
now blocked by a timber dam. The lock formerly had an ex-
is tension at the lower end but only a low bank in the canal
and an elevated towing path extending south 150 ft. remain.
$2:$ The flume originally was constructed in 1835, and later re-
built 6 ft . wide $\times 5$ to 8 ft . deep behind the site of the

```
 Hovidst getes in vacsusss; on trugnth side holes in cogsing at nooses fovalyr akms.
lockhouse. A concrete, board-insert gate is at the head of
the flume. Lockhouse (no. 18) on the berm was constructed
In 1829-30 and burmt in 1959: The foundation for the lock-
house contains gray and red medium grained sandstone (New
Oxford Formation), containing quartz, mica, and chips of
40 ft. from lork
red mud and black and green metamorphic rocks.^ Quartz
pebbles up to 1/4 inch diameter are also prominent in the
gray sandstone. The doorstep is white granite with quartz,
biotite, and dull gray orange-tinted feldspar. The lock
was damaged by Confederates in a raid on July 16, 1864.
{39.42-Amall culout (itahn)
39.71 (39.62) CULVERT 65 Constructed 1830-32. The (
coping and arch are cut Seneca red sandstone. The arch
```



```
has a }16\textrm{ft.}\mathrm{ span and an }8\textrm{ft.}\mathrm{ rise. }22\mathrm{ ringstones and
keystone are in the face of the arch. The abutment is 1 ft.
high and the parapet and coping are 3 ft. high. The span-
drels, parapet and wing on the south are red, coarse-
Skraight urings on movk, flaud wings on soctr; oreginally isfy. lony, 5fr. umain
grained sandstone (New Oxford Formation). A freshet on
```







> Old Overfall waste
> 39.64
> $(408.65)$
> 6 July 1975

canal and rising inland to 50 ft . at the base of a hill, is
:6 a terrace strewn with river-worn pebbles and cobbles. 547.75 Anal steam enter canal on berm; no siltation
$40.67 \underset{\substack{548.15 \\ 548.21}}{(40.71)}$ CULVERT 60 Constructed 1830-31. This
culvert is silted to the top of the arch (1971). The arch
has a 6 fr. span with a parapet of gray sandstone, New OxDow pith - fined in anile sind 30 A . diumsten, fucsot 36 m . comente pict jiver.
ford Formation. Prim silted for 700 ft . downturn.
40.80-41.00 (40.85-41.05) POWER PLANT The Dickerson

Down plant : 548,30
Plant of the Potomac Electric Power Company is on the hill on the berm. The outlet for cooling water from the plant crosses ${ }_{1}$ the canal at 40.80 . Concoct lind channel tr min. opposite the power plant. MP41- $410.05 \quad 548.36$ 41.00 (41.06) WHITES FORD Opposite the north end of the
power plant is the site of a ford used by Confederate Genaral Robert E. Lee (September 4-7, 1862), Col. J.E.B.

Stuart (October 1862) and General Jubal (July 14, 1864) to cross the Potomac River.
41.04-4105 (41.11-41.13) OUTCROP UN BEHM A cliff 40 it. 416.10-410.18 $548.45-548.50$
high, is formednof dark gray, medium grained sandstone and some red sandstone (New Oxford Formation). Gray shale with mud chips $1 / 4$ to 1 inch diameter is interbedded with the
sandstone. The strike is $10^{\circ} \mathrm{W}$. 548.58 low liege; strum e utes canst on bum, small; no delta.
41.15 (41.25) OUTCROP ON BERM A low ledge of New Oxford 410.25 , then $410.30 \cdot 410.40$
red sandstone, 10 ft . thick, over a sill of diabase, 15 to

20 ft . thick is on the berm. The beds slope to the south along the apparent dip.
41.27 (41.36) OUTCROP ON BERM Ledges on the berm up to $410.30-410.40$
25 ft . high, New Oxford red sandstone, strike $\mathrm{N} 45^{\circ} \mathrm{E}$ and dip $10^{\circ} \mathrm{NW}$. The apparent dip is $5^{\circ}$ to $10^{\circ}$ downstream. A sill of well-jointed diabase lies over the sandstone at the south end.
41.31 (41.39) CULVERT 68 Constructed 1830-31. The coping $410.45 \quad 548.75$ and arch are cut red and gray sandstone, New Oxford Forma${ }^{15-}$ tion. The arch has a 6 ft . span and a 3 ft . rise with 12 ringstones and a keystone. The abutment is 4 ft . high and the parapet and coping 2 ft. thick at lower end of culvert.] Wings, spandrels and the parapet are rough, hammer-dressed red and gray sandWings fland $45^{\circ}$ with sidso rusked. Ioff. sutantount aton coping. stone. The culvert is undermined and the south side of
the arch and the wings on the towing path side are hanging ok. in 1971, Rebuilt.

```
(1971).
\ / /
constructed 1829-32. The face of the lock is cut Seneca
redstone and some gray (pink tinged) sandstone, New Oxford
```

Formation. A block of gray granite is on the berm side of
the middle of chamber, 1 tier from top. The coping is from
Lees Quarry, Seneca and ashlar from the ledges $21 / 2$ miles
north of the lock. Masons' marks are in the lower recess
towing path side $V, 15 \mathrm{ft}$. north of the lower recess,
towing path side, 4 th tier down $\sim$ The upper extension
was built in 18 _ by removing the head of the lock above
the upper square quoins. A high embankment wall of red
sandstone rubble, 150 ft . long beyond the upper end of the
lock, with a timber breast wall 4 ft . high at the upper
end are remnants of the extension. Iron rods and 2-inch
eye bolts remain in the upper end of the extension. The
10 fr prom
flume on the beril side of the lock has a concrete culvert
Atone ruetruent alan tropeth for 100 fy . bolowecterk:

15 ft. long and control gate with board inserts at the
lower end. Lockhouse no. 19 is on the towing path. It was
constructed in 1829-30 and is built of sugary red sandstone and fine grained dark red sandstone (New Oxford Formation)

The sandstone in the lentils over the doors in the rear of the house has prominent mud chips. The front door step Cubit on flemene at live
is white quartzite from Sugarloaf. sud $=3^{\prime} x 3^{\prime}$; ali
$410.60 \quad 548.90$
A concrete frame, 3 gate waste weir is at the upper end of lock; 2 of the gates have paddle valves, the other gate has insert boards. The spillway on the river side is 20 ft . long with a 2 ft . drop at the end. The walls are sloping flow of concoct. red sandstone rubble. The original waste weir built in 1832 was a masonry overfall. date Gan. 26, 1915 on nuouside in conceits.

Lock 27 is at the lower end of the 8 -mile level.

The roadway on the berm extends north from the lock to the Little Monocacy Culvert.
41.47-41.98 (41.56-41.98) OUTCROP ON BERM Low ledges of

New Oxford red sandstone are on the berm; a low flood plain
is on the river side of the canal.

41.98	
411.01	
549.35	

ed 1830-32. The coping and arch are cut coarse-grained,
pink New Oxford sandstone. The arch has a 20 ft . span and Barrel : rifled, don tight firm tropeth
a 15 ft . rise with 36 ringstones and a keystone. The
abutment is 4 ft . high and the parapet and coping are 5 ft .
high. The spandrels, wings and parapet are hammer-dressed Bland wings $45^{\circ}, 25 / 4 y$ long. $8 / y$. suterotreat aton coping. pink sandstone. The culvert was undermined by a freshet in Congletely stilt in 1975.76.
:6 $\quad 1843$ and was repaired. It was washed out by a freshet and rebuilt in 1878 and rebuilt again in 1887. The spandrel, parapet, and face of the arch on the berm have fallen (1971).

The road from Lock 27 and from the Martinsburg Road to
2. Sprinks (Haulvigs) Ferry, near mouth of Little Monocacy

Creek, formerly passed through the culvert. Covert arch - facing on hum.

MP 42. 411.05



1831-3A. Original iron railing is partially intact on the
towing path side of the aqueduct. Quartzite posts are at
each end of the railing. Lead fills the knobs capping the
iron railing posts and is exposed 6 sections east of quartz-
$1 / 3$ of ruling gone. Vertical square ion pods bid stones on tooth $L \frac{1}{1}$ (plan)
ite post at west end. The circular iron balusters show T stone finds on heron (side new)
forge lamination in the rope cut grooves near the ends of

the west end of the aqueduct. Vertical grooves, 4 inches
wide in the inner side of the parapets at the west end of waterway were for stop gate boards. On Sept. 8,1862 ,

Confederate General John G. Walker attempted to drop the : 6 stonework of the aqueduct by prying the masonry apart after drilling for blasting holes proved futile; little damage was done ( ). Old wank once adjacent th-parknglty at aqueduct nor argo (1575).

The Baltimore and Ohio Railraod bridge to the north is

350 ft. long, consisting of 3 deck plate girder spans on
the original stone piers with concrete extensions. The



Bane
buachere 10 -
at canker ft. high. The wing walls splay $45^{\circ}$. The spandrels, parapet onurat, $\sin k$
20'diemeínc and wingwalls are coursed red sandstone rubble. Tuscarora bermanspox
gone, Sink
on cert $1 \theta^{\prime}$ Creek was used as a feeder to canal from 1833 to 35, during diam.jarch
intact. ${ }^{15-}$ which time the water was rented from the owner, J.M. CramWings 4561
lower part of well. After 1835 the water rights from the old feeder were
wings fist an
ont. out.
: subleased to operate a grist mill. The canal company
:
:: - abandoned rights to the water on December 19, 1836. The
$\because$ feeder entered the canal at the curve, a mile west of the
$\therefore$ : Berm embankment breached; abutments undermined. culvert.
24
$=-44.70 \quad$ NOLANDS FERRY Originally a ferry crossed

7 ?
413.65-413.80 Nolands Ferry Recercathin asa., toilets, tables, boat landing, no with

3 of the ferry. The bridge started in 1840 and designed by the canal here but in 1835 the canal company was ordered by
the Frederick County-Levy Court to -build a bridge in place Lewis Wernwag was a wooden truss. It was completed in 1848 and rebuilt in 1858. It was torn down by Confederate 1
'troops in 1864 and rebuilt again. The timber bridge was 418:82
replaced by an iron, pony (open), skew Pratt truss in 1876.

In 1913 it was replaced by a steel pony Pratt truss which
was carried away in the 1936 flood. The abutments that
remain are rough-dressed blocks of New Oxford red sandstone Broom on sip. smbendment sans* 7 4/7,70
and gray pebbly quartzite. An Indian trail crossed the

Potomac at Nolands Ferry, ferry and a ford across the

Potomac was established about 1750. A small community was

$$
\text { Recreation area } 55 \% 82 \text { to } 557195 \% / \text { Ferry Br.) }
$$

formerly at the ferry. Towpath, earth, frunots, manciany ag. $t$ Kramer Jung. MP 44: 419.45

4:3.85: 4:8.78) Road $t$ Water Plant = Waterphart Ron $\wedge^{150 \mathrm{ft} .} \mathrm{S} 2.02 \mathrm{upstream}$ is a 4 -story water pumping plant Fred. County Metropolitan lamar Comanersision. furnishing water for the city of Frederick that was built in
1970. The masonry structure is constructed of dense, black
limestone from the Grove Formation (Ordovician).
552.26 possible old "informal" over fall, 30 fY . long feeding to ravine 15 f . wide
through higher embankment on river; another similar owe 200 ft upstream.
$44 \cdot 70-45 \cdot 30$
SECTION 78 The canal was
divided in 1828 into 367 sections, each about a half mile berm where Brojoing canal:

Section 76, completed $\ddagger$ lune 24,1829 , was the first section finished of letting of 1828. A medal or a $\$ 20$ cash award 9
$:$ was offered R. and H. Fowler, subcontractor for Hurd, Can-

use from 1833 to 35 to augment the water supply for the
canal until the canal opened to Harpers Ferry. The feeder
was an earth flume along a shallow ravine from an impound-
ment on Tuscarora Creek, 1,200 feet to the north. [The

Tuscarora Cement kilns were located north of the feeder
and probably utilized the Frederick Limestone (Cambrian).)?
The first kiln was built in 1829 of fieldstone plastered across raikod, wooded asa 10 of Y. wide bremen 2 fried; $V$ at night angle $t$ naihoad; Extends lunch to creek, Which 20ft. wide; smbenhemest 4 ft. high; old fuder is sthaygtr, B. O joins canal gust to east.

MP $46=415.23(417,40) 553.35$
with mud but collapsed in its first firing. By 1830 there
$\underset{\text { embankment }}{\text { germ }}$
suds at ${ }_{2}$ $552.82^{2}$
Gushed trust
simeneshod short surface of towpath ends! at 552.82 5-
were 5 kilns operated by Egleston and Nosher, who were also building 3 more kilns. The cement was sold to the Canal Coompany. In 1831 Thompkins and Burdick operated the kilns!

They were closed down in 1832 because of the poor quality
7 of the cement.
 $46.76-46.95$
$415.9-416.18$

 summer MP 47: 416.22 ! 416.42
 rocks were quarried for building stone a short distance


18 $\quad 47=554.35$
 $417.600^{\text {Sarthe }}$ $417.600^{2}$ Sard
$\left.417.60^{2}\right\}_{20}$ of
$417.700_{2}$
$417,20-$ is $\mathrm{N} 65^{\circ} \mathrm{E}$ and the dip $25^{\circ} \mathrm{NW}$. The conglomerate is cist by 417.70

Sandy tracks- $\frac{\text { vec.ursivs }}{\text { coots }}$

$\left.\begin{array}{l}417.70 \\ 417,95\end{array}\right\}$ rutted muddy 554,75 oustergeon (155) $417.95^{-}$

MP 45 = 418.41.
fractures enlarged to fissures by solution. Pebbles and
cobbles ir-the conglomerate are angular to subangular, 1/2
to 12 inches in diameter. Most of the pebbles are limestone in a matrix of red shale and Limestone. The limestone
pebbles are commonly rilled to a depth of $1 / 4$ inch on exposed surfaces. 9 poorly developed fracture and joint systems cut the conglomerate.

Caution- It is illegal and dangerous to trespass on Rail-
road property. The conglomerate can be examined satis-
factorily along the canal and at the berm end of the foot-
bridge. Entry to the canal from Ramp Kanawha is private,

Do not trespass.

47.56 KANAWHA SPRING The spring rises in a pool 30 water is green gray
ft. in diameter at river level on the towing path side of $2 H$.w ide $\times 4^{\prime \prime}$ deep $\times 3 H \cdot /$ /ae. - chemwatot - discharge.
the canal. It was formerly enclosed by a dike that is
now breached. The spring is a resurgence of subterranean
drainage along solution fissures in the New Oxford lime
stone conglomerate. An old wooden waste weir that was under (wack sumond and filed.).
the towing path at the spring was removed in 1971. Water flow = $6^{\prime} \times 3^{\prime} \times 2 \%^{\prime}$
in the spring is polluted from drainage of septic tank fields which enters solution fissures.
$554.95^{-}$Calico Socks HBG.
47.72 555.05 CULVERT 72 Constructed 1830-31. The coping and arch are hammer-dressed, coarse grained gray (reddish tint) sandstone of the New oxford Formation. The inner ring courses are red sandstone rubble. The span is 16 ft . circular arch and the rise $71 / 2 \mathrm{ft} .24$ ringstones and a keystone are 1 ft . abutment alangull ark. 24 oK. lower l 4 crumbling; apparently not on the face of the arch. Sid he parapet and coping are 3 ft . full collapse above coping Strafer wings $\begin{gathered}10 \mathrm{ft} \text {. embantrucolt } \\ \text { above cor ing. }\end{gathered}$
high. Buttresses are on the flanks of the arch. They ex-
tend 2 ft . out from the coping and 6 ft . out from abutment at base. The buttresses are 5 ft . wide. The spandrels, parapet, and buttresses are fine grained New oxford red sandstone coursed rubble. The culvert rebuilt in 1869 at
which time the buttresses were added. A $3 \times 3 \mathrm{ft}$. breach
is on the downstream side of the arch between the towing Beg cuinut, enerst, came senecas canal. Od store atuthent

path and the coping (1971).
248.02
and 3 ft . rise. The parapet and coping are $4 \mathrm{ft} . \mathrm{high}$ and constructed of gray (pink tinge), medium grained New oxford sandstone coursed rubble. The arch has collapsed and the culvert is silted. Only 4 ringstones and the keystone $\therefore$ show (1971). Nowings, straget face. 4tiers+coping show. 12
$\therefore$ 48.13 555.48 CULVERT 74 Constructeq 1831-32. The coping and semicircular arch are cut Sereca red sandstone. $\Rightarrow$ The arch has a 4 ft. span and a 2 ft . rise with $8^{\text {r }}$ ringstones and a keystone in the face. The parapet and coping are $z^{5 \mathrm{ft}}$
$\therefore$ ft. high. The spandrels and parapet are greenstone (meta$\because$ basalt) coursed rubble. Sartaially silted whas, embankment 12 'above coping. 40.20 POINT OF ROCKS,PIVOT BRIDGE The pier in the center of the canal is 15 ft . wide, as well as the Bridge is 50 ff. long.
abutments are coarse-grained, New oxford red sandstone.

Much of color leached out of the rock. The original
timber pivot bridge was built in 1833-34 by Lewis Wernwag
with the masonry placed by Michael Byrne. Clearance above
the canal water level is 11 ft . The span was rebuilt as a
fixed bridge in 1844 and was raised to a clearance of 17
ft. in 1852. The present briage has an iron superstructure,

71 ft . long and was in use as a main highway approach to
the bridge over the Potomac until 1937. West of the bridge
are large boulders of greenstone (metabasalt) and quartz-
ite from the railroad cut along side of the canal. The railroad station at Washington Junction, $1 / 2$ mile east of pivot bridge, is a photogenic classic of Victorian arch-
itecture. Point of Rocks was known as Johnson Point in the early 19th century. Timber warehouse et R.R. and roed. (gone 1977)
one with nine spans, constructed by the Potomac Bridge

Company, 1851 to 1853 and opened on Sept.1, 1853 (Va. Dept.

Public Works, 36th Annual Report, 1851, p. 496); a ferry 2 deck, girder spans on Va. ade, Fon Maside
over cannal and rairod.
was in operation previously. The road crossed the pivot
bridge and followed along the river side of the towing path
to the river briage. In aadition to highway, the original
bridge carried a narrow gage railroad to haul ore from

Virginia to the Baltimore and Ohio Railroad in 1858. The

Narrow gage ore railroad crossed the canal on a timber
trestle near the site of the present highway bridge. An 8
span, through Pratt truss iron bridge, 1460 ft . long, 40 ft .
above the river, was built by the Smith Bridge Company,

Toledo, Ohio, for the Frederick Bridge Company in 1889. It

cost $\$ 46,000$ and was swept away in the 1936 flood. The
present 8 span through truss steel bridge was
built by the Maryland State Roads Commission and opened

December 27, 1937; each span is 105 ft . long and the total

length of the bridges $1,689 \mathrm{ft}$.
48.42-48.60 POINT OF ROCKS TUNNEL In the early

1800's this area was referred to as the Lower Point of

Rocks in distinction to Upper Point of Rocks, now Catoctin

Tunnel (49.81-50.27). Because of the steep bluffs that descended to the edge of the river at this and three other
places to Harpers Ferry, the right of way was in dispute between the Baltimore and Ohio Railroad and the canal com-
patny from 1830-32; after a long legal suit, agreement was reached on May 9, 1833 based on an act of the Maryland

General Assembly, December 1832, passed March 22, 1833,
whereby the canal company graded both the railroad and the
canal for a total distance of about 4 miles along 3 stretches
between Point of Rocks and Harpers Ferry. The railroad paid

28 the canal company $\$ 266,000$ in 12 monthly installments for the work, bought 2,500 shares of canal company stock,
agreed not to build beyond Harpers Ferry until canal
canal reached Cumberland with the time limit of the $C \& \sigma^{-}$ charter, agreed to erect a fence in the narrow areas if steam locomotives were used, and allowed the canal company

12 months to complete the joint grading. Grading commenced

May 9, 1833 and was completed December 1, 1834. The fence was not built as the B\&O paid the C\&O $\$ 2,763$ on Nov. 8, 1836 in lieu of erecting a fence and agreed to warn the canal company when a locomotive was coming. Joint construction at Point of Rocks involved $3,023 \mathrm{ft}$. of canal and $3,427 \mathrm{ft}$. of railroad. Most of the canal in this area was built on a revetment placed in the river. The grade of the railroad from 1834 to 1867 carried a double track line on a ledge cut into the bluff on the berm side of the canal. The Point of Rocks Tunnel, 788 ft . long, was started on December 16, 1865 by the Baltimore and Ohio Railroad as a part of a broad improvement program. It was holed through $\therefore$ in 1867 and opened for operations $\ln$ 1868. The line was
removed from the ledge at the base of the bluff after the tunnel was opened. The date 1902 over the arch commemorates the time when the tunnel was partly lined and faced with
brick as a prt of a program of improvement of the original
railroad line from Baltimore to Harpers Ferry. The ledge
along the canal was widened and a single track placed on
it in 1961; the remaining track was placed under the center
of the tunnel arch in order to increase clearance for
piggyback operations on the railroad.

The cut along the ledge is in greenstone (metabasalt)
of the Catactin Formation. It is a fine grained, dark
green rock with zones of schist. Originally the rock was
:s a Precambrian lava that underwent metamorphism near the end
of the Precambrian. Large, disrupted quartz veins are fold-
:2 ed and faulted within the greenstone; calcite, generally
stained brown, with distinct rhombehedral cleavage is
if associated with the quartz veins. Schistocity strikes
$N 30^{\circ} \mathrm{E}$, dips $20^{\circ}$ SE. Several faults, steeply inclined to the east, cross the face of the cut. Arcuate fractures are common and joints trend $N 80^{\circ} \mathrm{W}$, dip $30^{\circ} \mathrm{E}$; $N 65^{\circ} \mathrm{E}$, dip $65^{\circ} \mathrm{SE}$.

DIAGRAM OF ROCKS IN B\&O CUT
Draft-12"side x 8"high- reduce to 4" x 2.6"

IT IS DANGEROUS AND ILLEGAL TO TRESPASS ON RAILROAD

PROPERTY. THE ROCKS AND MINERALS CAN BE SAFELY AND

SATISFACTORILY EXAMINED WHERE SPOIL HAS BEEN PLACED IN OR

ALONG THE BERM OF THE CANAL.
8.
4 土 . $^{89}$. $4-48.95 \quad$ The concrete wall on the berm was
built 1913 to 1916 to replace a timber cribbing and stone
revetment. The site is famous for the much-used photograph of the Baltimore and Ohio Railroad showing an express
train and a passing canal boat. The photo was made in
this section on order of Daniel Willard, one of the rail-
road's great presidents, in

of the lock, along the railroad, is mainly schist. The low
bank in the center of the canal prism, 150 ft . downstream
from the lock, is the remains of a lower extension built
in 1881. The flume, 15 ft . from lock on berm, is $6 \times 6 \mathrm{ft}$. Flume now filled 5 ft . wide $\times 5 \mathrm{fy}$.high
in section. A concrete culvert 10 ft . long is at the
$3 \mu$.wide
lower end and an insert board weir $\boldsymbol{\Lambda}^{\text {is }}$ at the upper end of
the flume. The original flume was constructed in 1834.

Lockhouse 20 is on the towing path side. It is brick on
foundation of greenstone, granodiorite, and quartzite
rubble.
48.96
 WASTE WEIR 40 ft . West of Lock 28 is a
concrete frame, 3 gates, insert board, weir. Nopadiles.
 at mouth of run and cubit under railroad.
49.27 CULVERT 75 MCGILLS BRANCH Constructed
1832. The span of the $\operatorname{arch}$ is $\stackrel{8}{8}^{6} \mathrm{ft}$. The parapet is 2 ft .
high and is constructed of schist and greenstone rubble.

The coping is cut, medium grained Patapsco granite. The

2:- culvert is filled to the to od the arch (1971).

steel beam and concrete slab,
is culvert $=$ coning puathea if( 166 of of line, water wells

in 1833-36. The railroad was originally a double track line on the ledge cut into the bluff on the berm. The tunnel was constructed 1867-68 and partially lined and faced with brick in 1902. The old bench along the canal was enlarged in 1961 and the eastbound track placed on it. The westbound track was moved to the center of the tunnel for greater vertical clearance needed for operation of piggyback cars. The face of the cut is 80 ft . high, 300 ft. long, in Catoctin greenstone (metabasalt). The greenstone is medium-grained with knots of biotite up to $1 / 8$ inch size; a horizontal quartz vein cuts the metabasalt. Prominent sheeting planes strike $N 10^{\circ} \mathrm{W}$, dip $60^{\circ} \mathrm{W}$ with spacing of 4 to 10 ft ; joint strike $\mathrm{N} 75^{\circ} \mathrm{E}$, dip $40^{\circ} \mathrm{NNW}$; $\mathrm{N} 30^{\circ} \mathrm{W}$, dip $32^{\circ} \mathrm{NE}$. Parallel vertical drill holes used in pre-split blasting are prominent in the face of the cut. The greenstone can be examined in the canal and on the berm where large blocks from cut are deposited.

Metabasalt crops out on the railroad west of the tunnel, joints at $N 30^{\circ} \mathrm{W}$, dip $65^{\circ} \mathrm{NE}$. Fractures are numerous. HBO: Bald Eagle Island. Cliffs and ledges, 1250 pr . from time $t \mathrm{HBO}$ and ta 700 ft . And' of $H B O$ 50.55 OUTCROP ALONG RAILROAD Cuts and ledges 40 ft . high expose Precambrian medium grained greenish gray schist at the south, fine grained schist at the center and north end. Solution pockets up to 6 inches in iameter are at the north end. Schistocity strikes $N 5^{\circ} 玉$, Smooth arcuate sheeting faces in cut on south. dips $45^{\circ} \mathrm{E}$; joints strike $\mathrm{N} 5^{\circ} \mathrm{E}$, dip $65^{\circ} \mathrm{W} ; \mathrm{N} 20^{\circ} \mathrm{E}$, dip $50^{\circ} \mathrm{ESE}$; $\mathrm{N} 35^{\circ} \mathrm{W}, \operatorname{dip} 45^{\circ} \mathrm{NE} ; \mathrm{N} 30^{\circ} \mathrm{E}, \operatorname{dip} 68^{\circ} \mathrm{NW} ; \mathrm{N} 55^{\circ} \mathrm{W}, \operatorname{dip} 75^{\circ} \mathrm{NE} ;$ $N 50^{\circ} \mathrm{W}, \operatorname{dip} 63^{\circ} \mathrm{SW}$.
50.63

## CULVERT 78 POPLAR BRANCH This was a

road culvert constructed in 1832. The coping and arch are
cut, medium-grained red sandstone, New Oxford Formation.
$\therefore$ The arch has a span of 8 ft . and has 8 ringstones and a keystone in the face. The parapet and coping are 3 ft .
high with the parapet constructed of coursed greenstone
 6 tier parapet +1 this cong - rough cut lunurimes.
2 s mull hashes in culurt orch on canal.
and granodiorite rubble. The culvert is silted and flooded to the top of the arch (1971).
$50.70 \quad$ OUTCROP ON RAILROAD Low cuts and ledges
Towpath
from about.
fork 29
expose schist on the east and gray granitic gneiss to the to $1000 \mathrm{ft}_{\mathrm{t}}$
santa
Catrotio? Aquentur
$=$ south, $\varepsilon$
smooth, gore.
foe 29 to saith Mr th ming. west. Schistocity strikes $N 20^{\circ}$ E, dips $40^{\circ}$ SE. The gneiss varies from green gray to bluish gray and is coarse grained,
 consisting of quartz and feldspar with bundles of biotite up to $1 / 8$ inch size.
50.87

LOCK 29 Lift 7 ft . Constructed 1832-33.

The berm side of the chamber is mainly cut Patapsco granite; hammer-dressed quartzite is in a tier 2 tiers above the
bottom of the lock on the berm side. The upper tiers on Short rubble wall on low end of lock; coursed, at end of wing to flume the towing path side of the chamber, all of the lower recess, and the lower wings are granite. The lowest 3 tiers of the towing path face of the chamber are hammer-
dressed quartzite. The granite is light gray with orangeone block of ss. in coping on berm at lowish wing comer.
tinted feldspar on weathered surface; biotite and quartz are prominent. The quartzite is scabbled with scalloped faces. Some red sandstone is in repaired sections of the chamber. The lock was lengthened $b y_{A}^{2}$ crib extension on the upper end. To make the extension the head of the lock was flumes 5 to $7 \mathrm{fP} \cdot$ dup $\times 8 \mathrm{f} \cdot$.wis, rubble wall; hide on hie of hot removed above the square quoins at the upper recess. The berm embankment of the extension is well preserved; some timber from cribs are in the towing path bank of the extension. The breast wall of stone and timber at the upper end of extension is also preserved. Lockhouse no. 21 on the berm, constructed 1836-37, is brick on a metabasalt and is granodiorite rubble foundation. The flume is 20 ft . on the berm from the lock and is a graded overfill, constructed in $\therefore$ flume = coursed rut le, lays thess in sxtincion arse. 1834. A pivot bridge was formerly overt the lower end of $\therefore$ the lock. NPS = maintenance bribing along theme.

The northeast wall of the flume has rubble of dark gray schistose gneiss, dense black hornblende diorite,
dark gray schist with laminae of biotite, quartz and fedspar, and metabasalt; a block of metabasalt has a band of
prismatic crystals of yellow green epidote.
Towpath: ${ }^{3}$ Luth Catrition

WARNING- COLLECTING OF MINERALS ON PROPERTY OF THE

NATIONAL PARK SERVICE IS PROHIBITED BY LAW.

WASTE WEIR This weir is 700 feet west of

Lock 29 and is a concrete frame, with 3 gates for insert
: boards. The original overfall was constructed in 1833. No paddles
51.10 CULVERT 79 CLAGETY (SUGARTREE) BRANCH

Constructed 1832-33. The coping and semicircular arch are :6 cut, medium-grained white sandstone $8 / \% \cdot \operatorname{span} s / f$ ? ice, sminumiler cut, medium-grained white sandstone. The arch has a 10 ft .
span and 5 ft . rise with 18 ringstones and a keystone in
the face. The springing line is at water level. The
parapet and coping are 2 ft . high. Spandrels and the flayed urugs, 1088 . Eubabement above coring.
parapet are coursed white, sandstone rubble. The culvert
was carried out by a flood in 1870 and was rebuilt. The towing path face of the culver is hidden by dense brush;



```
the berm face is visible from the road.
51.35-51.46 OUTCROP ON RAILROAD Blue to
green gray gneiss with schistose zones is exposed along the railroad. The gneiss is primarily quartz, feldspar, chlorite and biotite with small garnets; it is deeply
``` weathered to a brown crumbly rock. The schistose zone has coarse grained, pebbly quartz veinlets. The rock can be examined in the bed of the canal where there are large boulders.
51.51 CATOCTIN (No. 3) AQUEDUCT Known as the

Crooked Aqueduct because of the curves on the approaches Copisin and raving strud in finced.off arse in camal perism oncact. that were required to place the aqueduct at right angles to the stream channel. Constructed 1832-34. This aqueduct was 92 ft . long between abutments and had 3 arches. The center arch was elliptical with a 40 ft . span and 10 ft. rise. 38 ringstones and a keystone were in the face.

The side arches were semicircular with 20 ft . spans and 10
ft. rises. Each arch had 28 ringstones and a keystone.

The ringstones were granite cut at Ellicott Mills near

Baltimore. The parapet and coping were ? ft. high; the coping was \(271 / 4 \mathrm{ft}\). l above low water, 33 ft . above the foundations. The towing path parapet was 7 ft . thick and the berm parapet 5 ft . thick. The waterway was 25 ft .
:. wide. The piers, were 6 ft . thick and built of ranged rubble of biotite granite. Rough faced granite with cut beds and joints were in the spandrels, parapet and wing walls; some repair blocks of seneca red sandstone at ends of the waterway on the berm. The railing along the towing path was wrought iron and at the east end a three-piece laminated forging that formed the rods is prominent where bent and separated. The contractor who built the aqueduct \(\approx\)
:. was accused by canal company of ordering and accepting 2 undersized stone and a serious breach occurred in the area

A butment wing wall at west end of bridge = coursed rubble 54*. Whir coping = schist. 166
 wall of monteud gray sadist subtle at ind s of porthidge; frothiege is single concenter ham span int iron racing.
of the wing walls in 1835. A wooden trunk was placed in gray grum grues in hilt and sud stans, cut; Met's sehist-gnies subtle . grant: grey uk blued struts.
the waterway and the stone work was repaired. In April,

On cast is a groom of wind (gatim) and hole akmes as wall toputict arch.
1838 a breach occurred at the east end and a wooden trunk
was placed in the waterway. The trunk gave way June 18 , 1838 and a wing wall fell. The stone work was repaired. Serious leakage developed in 1859 and by 1870 the aqueduct had to be partly rebuilt. The berm wall was pushed 15
inches out of line and was leaking badly 1873. The center
arch began sagging in the 1920's because of the west pier
which was weak. It was repaired but the berm parapet,
spandrels and part of the arches fell in early 1950's.

By 1960 the center arch was hinged at 4 points, sagged 1
ft. and was 1 ft . out of plumb; the west circular arch was
- October: (on sign aitequaduct.
compressed. On September 30, 1973, the center and west
arch collapsed during a freshet on Catoctin Creek.
22 Flat slab blow cath on six of old cost pies,
Baltimore and Ohio Railroad bridge no. 39 is north
of aqueduct. It consists of 2 arches with hammer-dressed


granite ringstones and spandrels, piers, abutment and

Constructed 1835. This drain is now covered. The square
\[
6 \text { frh.x } 10 / \mathrm{fr} . \mathrm{w} .
\]
drain under the railroad, 4 x 6 ft . in size empties into Abuthmats = 5 this, fiat encucte span.
the canal. The prism is silted to the towing path level. 9
10. From mile 52 west the fill gradually tapers for 3,000 ft. It also tapers east to the aqueduct. The fill contains 12
: \(:\) about 26,000 cubic yards of silt, sand, and gravel deposited since 1924 indicating that creek carries at least 550
cubic yards of soil into canal per year from a drainage
basin of about \(5,000,000\) square feet which is equivalent to
removal of about \(31 / 2\) inches of soil per century over the entire basin.

Cut on B.OR.R. - schistrciky \(30^{\circ}\) E. along R.R.(dip) in thick heder grunetroc? Outre 150 \&t. wide.)
52.00-52.09 LARGE BOULDERS ALONG TOWING PATH The I visas drill holes.
: boulders are Precambrian dark green gneiss, mainly quartz
52.30

CULVERT 81 Constructed 1832-33. The
coping and arch are cut seneca red sandstone. The arch has 4
a \(\$ \mathrm{ft}\). span, 2 ft . rise with 10 ringstones and a keystone. The parapet and coping are 4 ft . high the spandrels and parapet are quartzite and granodiorite rubble. The berm side of the culvert is plugged with debris. There is a washout in the berm bank at the culvert.
10- Ahot, fland wings; 12 A - smbalmint. B,O cubut silted; suthe grugitonly.
52.51 CULVERT 82 LITTLE CATOCTIN (MIDDLE) CREEK
 Constructed 1832-33. The circular arch of cut Seneca red in hancel.
sandstone and limestone has a \(16 \mathrm{ft} . \operatorname{span}\) and an 8 ft . rise.

24 ringstones and a keystone are in the face of the arch.

The inner ring courses are biotite gneiss rubble. Spandrels
and wings are coursed quartzite and gneiss rubble with some
cut stones. The waterway and berm side of the arch have
fallen and the parapet on the towing path side has been
replaced with an earthen embankment 8 ft . high. The cul-
vert collapsed 1847 ana was rebuilt in 1848-49. The
culvert was formerly used as a road culvert.

The Baltimore and Ohio Railroad bridge on the berm
has coping and a semicircular arch made of cut granite. Towpath Smith s-
couth gore Esth, \(\stackrel{p \text { ? }}{\downarrow}\)

The span is 16 ft . with an 8 ft . rise. 38 ringstones and a keystone are in the face of the arch. The spandrels and
 Hump at carr sud of \(R R\) yard, \(1,000 \mathrm{ft}\). end g culart \(83=53.00\).
53.20 CULVERT 83 Constructed 1832. The coping and semicircular arch are hammer-dressed quartzite. The arch has a 4 ft . span and 2 ft . rise with 8 ringstones and a keystone in the face. The abutment is 3 ft . high and the parapet and coping are 5 ft . high. The spandrels and parapet are coursed quartzite and gneiss rubble. The pavement has a 1 ft . drop on the lower side of the culvert. 53,24 Sufrumal orator; shown on Insadulei map per Proxies.

\section*{\(\therefore \quad\) (Tobacco House Branch)}
53.60 CULVERT 84 Road culvert constructed 1832-33.

The coping and circular arch are hammer-dressed dense,
light gray quartzite. The span is 10 ft . with a 5 ft . rise.

16 ringstones and a keystone are in the face of the arch. The abutment is 4 ft . high and the parapet and coping are also 4 ft . high. The spandrels and parapet are coursed rubble quartzite and green biotite gneiss. Outcrops of gneiss are in the low bluffs on the north side of the railroad yards. A terrace of brown sandy silt soil is on river side of canal and rises 20 ft . above canal to west. \(8 \mu\)-sumtankment aton coping; flaved crings
54.05 CULVERT. 85 Constructed 1832-33. The cirBreace on ham; paupet and croing gone. cular arch is cut Seneca red sandstone, with a 8 ft . span and a 2 ft . rise. The parapet and coping are 3 ft . high. The coping is cut dense gray quartzite and the spandrels and parapet are gneiss and quartzite rubble. The culvert is filled to the top of the arch (1971). Ohand ungo 54.10 TERRACE ON RIVER SIDE There is a terrace 20 Waten Cmpeng
ft. above towing path. A swale 200 ft . wide is between the canal and the terrace; the swale formerly used as a :18- Portable torlets Picnic area.

\section*{landing field for light aircraft.}
54.60 CULVERT 86 Constructed 1832. The circular
arch is cut Seneca red sandstone with a 6 ft . span, 3 ft . rise and contains 6 ringstones and a keystone in the face.

The abutment is 3 ft . high. The spandrels are quartzite
No unige, \(\delta \mu r\) sumadmaty albion caging.
and gneiss rubble. A 12-inch iron pipe carries a sewer
line through the culvert [and connects with a treatment plant 50 ft . west and 50 ft . south of the canal.] The new treatment plant was constructed in 1971 [adjacent to the 100 fy .on south side; emturtiment 15 f . high sumondo plant.
old one] Watt pollution control facility
54.80

CULVERT 87 Constructed 1832. The coping 8/4. suntruanch atru coping; fleeced wing and arch are cut Seneca red sandstone. The arch has an 8 ft. span and a 4 ft. rise with 14 ringstones and a keystone in the face. The springing line is at stream level. The parapet and coping are 4 ft . high. The spandrels and parapet are gray quartzite and gneiss rubble. .The culvert
was rebuilt in 1863 but was washed out and rebuilt again in 1873.
54.97 WASTE WEIR This is a standard weir with a concrete frame and 3 gates for insert boards. Gray, coarse grainedgrained quartzite and hormblendite rubble are in the with boards inplace; no paddles.
pavement on the river side of the weir. The original over-
fall at this site was constructed in 1833.
55.00

LOCK 30 BRUNSWICK Constructed 1832-33.
the face of the chamber. The quartzite facing is ribbed
i6 and the sandstone under the briage is crumbling. A bank
for an upper crib extension is on the berm at the upper 6ad the sandstone under \(\tau\)
for an upper crib extensi
Uppurill, fundu stme Wocto
if end at the upper end of the lock. The stone work above
the square quoins in the upper recess was removed to extend
the lock. A flume in a concrete culvert, 8 ft . wide, 6 ft .
conneve pirs
high is 15 ft . from the lock on berm. The original flume \(\therefore=\)

Cut Seneca red sandstone and dressed gray quartzite are in
\(\square\)

was built in 183舜, and water from the cinme powered an old caurung on caral 300 frownt of lonk
mill on the northeast side of the lock. Lockhouse 22, a
 frame structure, was constructed in 1836 and was formerly 50 ft . north of lock opposite the northwest corner of the mill. The bridge across the lock was originally a pivot bridge built in 1841 on a design of Lewis Wernwag. It was rebuilt in 1869 and the last reconstruction was 1932.

The first highway bridge over the Potomac River at

Brunswick was built by the Loudoun and Berlin Bridge Company in 1855-56, and opened on December 1, 1856. It was a timber covered Howe truss, 9 spans, \(1,568 \mathrm{ft}\). long and cost \(\$ 54,500\). It was burned by Confederate troops on June 7, 1861 and a pontoon bridge was put in use in October 1862. The bridge was rebuilt in 1895 , as a privately owned toll bridge. It was a 9 span, steel, Warren truss, curved chords without verticals. One steel Warren through truss, standard without verticals was over the canal. The bridge was purchased by the state of Maryland in 1922. The
present bridge was built on the north side of the 1894 spans by the Maryland State Roads Commission in 1953-55 and was opened July 28, 1955. It cost \(\$ 2,850,000\) and consists of 16 haunched deck girder spans over the river, canal and railroad. It is \(2,425 \mathrm{ft}\). long with a 26 foot roadway. The Baltimore and Ohio Railroad yards along the berm of the canal were built in 1890-91. They were re: built and art: eastbound yard added in 1906-07. The town was formerly named Berlin but was changed to Brunswick 1890.
55.33 CULVERT 88 Constructed 1832. The coping and semicircular arch are cut glassy gray quartzite. The arch has a \(10 \mathrm{ft} . \operatorname{span}\) and a \(\stackrel{4}{8}_{8} \mathrm{ft}\). rise. There are 14 ringstones and a keystone in the face of the arch. The parapet and coping are 4 ft . high. The spandrels, flared umpenthment and parapet are coursed glassy, gray quartzite rubble. The culvert is silted to 1 ft . above the springing line. (1971). B00 culunt, \(6 / 5\). simeminear ach on trom
56.08 CULVERI 89 constructed 1832-33. The arch
is cut red and gray sandstone and has an \(8 \mathrm{ft} . \operatorname{span}\) and 4 -ft. rise. 14 ringstones and a keystone are in the face. \(10 / 8\). smbunkent afro coping.
The abutment is 2 ft . high. The parapet and coping are 5 ft. high. The coping is cut white, fine grained sandstone; the spandrels, parapet and flings airing quartzite rubble. Ord cattle shad on Bro RR, 1000 fr cent of culet 90 . Cattle sheds ak ind if 1000 /ts. wits.

CULVERT 90 Constructed 1832. The semicircular arch is cut Seneca red sandstone. The arch has a 6 ft . span, 3 ft . rise, and 12 ringstones and a keystone in the face. The parapet and coping are 2 ft . high. The coping is cut t pebbly quartzite; spandrels and the parapet are coursed quartzite rubble. Unis flan
knoxville on Payne Ane.
57.00 CULVERT 91 Road culvert, constructed 1832. The arch is cut gray sandstone with a 12 ft . span \(=\) and a 6 ft . rise. 18 ringstones and a keystone are exposed. 24
25- in the face. Possibly one additional ringtone is on each



Fhmen from mill raxionts and side of culvert on trom; culons opennory s a well 178

 \(5 / 51 \frac{15}{10}\)


The parapet is 6 ft . high and builtof quartzite rubble. A Fft. diry wall and 4 ft . embankment are above the top of the parapet. The culvert is filled to top of the arch with silt and trash. On the berm the culvert face is in cistern 20 ft . deep, lined with scabbled quartzite. \(21 / 2 \mathrm{ft}\). of masonry is between the culvert and the breast wall beneatk the lock. Lockhouse 23 constructed of brick in 1833 and is on the berm side of the lock. 30 ft . west of the head of the flume is a stone sarch and race for an old mill. A pivot bridge was formerly over the middle of the lock. It was :- built in 1835 by, Lewis Wernwag.
weir is beneath the towing path. The lower wings are phyll-
z- ite rubble. The original overfall at this site was built in 1833. Insent tronds, mo paddu gatro.
58.11 - Infrumel wack, 01 wot gaccuss piont. (Penntice)
58.12 BOULDERS IN TOWING PATH Large gray quartzite,
\(\therefore\) Weverton Formation, age prominent in the towing path.
thrave Cue - Tod 31. To cottages - tropeth nd as a lond. Whit g this tropetk is classy saith, Mo no th, enomeruts.
58.15 CULVERT 93 ISRAEL CREEK Constructed 1832. The
coping and elliptical arch are buff gray sandstone. The arch has a 25 ft . span, 8 ft . rise, and 26 ringstones and a keystone in the face. The springing line is at stream level. The parapet and coping are 3 ft . high. The spandr rels, parapet and wings are dark gray, pitted, medium grained metagraywacke with quartz and a soapy appearing Gland wings
feldspar predominant. 10 fr .embamemunt afro culvert

 58.36 OUTCROP ON RAILROAD Slabby beds of cat-
octin greenstone (metabasalt) and exposed in shallow railroad cuts.
58.59

OUTCROP ON RAILROAD Slabbly beds of

Catoctin greenstone(metabasalt) continue in this area.
58.72-58.99

MILES NARROWS Joint construct-
ion of 3,500 feet of railroad and \(3,052 \mathrm{ft}\). canal were made here in 1833-35 and included reconstruction of a


Pin 10 from south on canal thopath. "1 pies in all = 12 spans. Nay apace at and is the \(12^{\text {K }}\).
Sorthulye across canal greet wot of U,S. 340 Bridge.
59.54 SANDY HOOK BRIDGE Construction of this
bridge was begun in 1941, suspended in 1943 and resumed in Concentre pius
1946. The bridge was opened october 18, 1947. It is a continuous Warren deck truss with arched lower chords,
\(2,246 \mathrm{ft}\). long. It cost \(\$ 1,146,000\) and carries U.S. 340 across the Potomac River. East of the bridge is a 4 ft . concrete pipe culvert under the railroad that drains into the canal; the canal is silted to the level of the towing path (1971). This is the site of canal culvert 94, 4 ft .
 span, constructed 1833, but now buried. Sandy Hook was formerly known as Keeptryst. A small bridge over the canal here was originally constructed in 1834.
placed by an embankment. A metal pipe now drains the canal \(3 \mu \cdot h \times 4 \mu \cdot w\). shed cornets; timber frond wings
\(\therefore\) at this point. A large block of stone 12 ft . long, 7 ft . 23
wide, 5 ft . high is on the berm. It is gray fine-grained to dense Weverton Quartzite, wi ch quartz wests. \(1 / 4\) to \(1 / 2\) Sandy Hook H.B.O.
inch wide crossthe bedding; quartz blebs up to 2 inches wide, 6 inches long, are in zone 6 to 10 inches wide.
59.86 OUTCROPS IN RIVER Ledges of granite gneiss are prominent at low water. Blocks of grantie gneiss are in the revetment on the river side of the towing path.
59.90-60.70 REVETMENT The river side of the towing
path is protected by awol constructed of quartz-mica-schist
+ quartzite
and hormblendite \({ }_{A}\) rubble. Wall sere \(45^{\circ}\) townes sion s.
60.21 LOCK 32.8 ft . lift, constructed 1832-34. The stone is mainly cut, wavy-banded gray limestone from quarries in the Great Valley. Some cut blocks of granite gneiss from a quarry on the Virginia side of the river, Buran Lack 32 : \(=\) roots.
up to 5 ft . long, 2 ft . wide, \(1 / 2 \mathrm{ft}\). thick, are at the
upper recess on the towing path side. The granite has
mica in short, straight segments, many intersecting at
right angles, glassy feldspar and very little quartz. The
2nacg old Potman Co.aluicu blow lore. .
coping on the berm side is mainly cut granite. The lock has washed badly and only the 2 to 3 tiers of the chamber remain on the towing path side of the chamber. Most of the chamber intact on the berm. 2 tiers of the upper berm recess are gone and the wings have fallen. The towing path has washed down 3 ft . below the level of the coping (1974 \({ }^{4}\) ). Large granite blocks are on the towing path at the midpoint of the lock. The flume is 15 ft . on the berm side of the 6?? (chech) lock and has a concrete culvert 4 ft . high \(\mathrm{x} f \mathrm{ft}\). wide, 10 ft . long at its lower end. The lock had a lower extension but only a low bank in the canal, covered in many places by 16
\(:\) wash, remains. Rectangular slots on the lower berm coping were for attachment of the extension cribs. Breast wall of \(\therefore\) :- the lock is \(11 / 2 \mathrm{ft}\). above the square quoins of the upper recess.

Lockhouse no.24, constructed 1836-37, was formerly on 2 the side of the railroad embankment at the midpoint of the
lock. It was reported to be frame with a rubble foundation but photos indicate it was built of masonry. In 1843 a train hit the northeast corner of the lockhouse as the railroyd \({ }^{2}\) tracks were laid without regard to foundation of lockhouse and the superstructure of house was built after the railroad construction was complete.

Joint construction of 1,100 feet of railroad and turnpike and \(1,126 \mathrm{ft}\). of canal was made between Lock 32 and Harpers Ferry in 1833.

The wall on the river side of the towing path is mainly quartzite containing pebbles up to \(1 / 4\)-inch size and prominent veins of quartz; there is some quartzitic phyllite in the wall.

Weverton quartzite crops out in ledges above the railroad and along the road at the east end of the lock where itorms a prominent recimbent anticline. Ledges
\begin{tabular}{|c|c|}
\hline 1
2 & ```
of quartzite in the river, strike N }3\mp@subsup{0}{}{\circ}\textrm{E},\textrm{d}\mathrm{ dip 600SE. There
are large potholes in these ledges.
``` \\
\hline \({ }^{3}\) & Diagram of structure- use Md. G.S. perspectife original \(8^{h} \times 12^{l}\); for reduction to \(2.6^{\prime \prime} \times 4\) \\
\hline \({ }^{5-}\) & 500 ft . west of the lock the remains of an old iron \\
\hline 7 & truss from the Shenandoah River Bridge, Harpers Ferry, are \\
\hline \[
8
\] & visible at low water. The bridge was swept away in the \\
\hline 10. & March, 1936 flood. \\
\hline \multicolumn{2}{|l|}{1;} \\
\hline 12 & 60.30-60.63 WALL ON BERM A massive wall, along \\
\hline \multicolumn{2}{|l|}{1?} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
the railroad and highway, is mainly coursed quartzite rubCoursed rubble wall on berm, \(20 / f\). high; rozd at top; formerly R.R. roadbed. \\
ble. Weverton quartzite crops out along the railroad.
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{16} \\
\hline 17 & 60.36 VIEW SOUTH TO VIRGINIA Ledges of Weverton \\
\hline \multicolumn{2}{|l|}{: \(\varepsilon\)} \\
\hline 20- & talus slope is above the ledge along the power line. In \\
\hline 2
22 & ledge to the west, under power line, the rock beds are \\
\hline 23 & horizontal; 1,000 ft. east, at the east end of ledges, the \\
\hline 26 & beds dip \(20^{\circ} \mathrm{E}\). \\
\hline
\end{tabular}

\section*{Harpers Ferry}

of the piers for this bridge are visible at low water. The culvert at the lower end of Lock 33 formed the approach to the bridge.

The Baltimore and Ohio Railroad reached the east bank
of the river at Harpers Ferry December 1, 1834 and its
bridge no. 40 was constructed \(1835-36\) and opened in March 1837. It was designed by Shaw and Wermwag and was a timber, covered bridge, 900 ft . long with 6 spans each 85 to 135 ft. long over the river. 1 skew span, 100 ft . long, was over the canal. The spans were 3 framed trusses abreast, two :5with a total width of \(40 \mathrm{ft} .\), caarying two railroad tracks on the south side and one 12 ft . wide carrying a common road on the north. The masonry work was by Charles Wilson and the superstructure was built by Lewis Wernwag. The timber 2:
zz for the bridge was cut at a mill owned \(1824-43\) by Wernwag on

Virginus Island at Harpers Ferry. The bridge cost 24 \(\$ 23,4.50 .60\) plus \(\$ 5,596.34\) for repair to the piers. The

span dropped by use of explosives. A trestle that replaced spans was burnt a few weeks later and a new trestle was erected only to be carried away by a flood in April 1862.

A trestle replacement was carried away by a flood again on

June 7, 1862. A new trestle with iron replacing some of the wooden members was completed on June 16,1862 , but was
destroyed by troops of Stonewall Jackson on September 24 , 1862 after the battie of Antietam. Four additional cast iron Bollmann trusses begun in mid-1862 were completed on April 13, 1863, and withstood the flood in May of that year. :- However, they were demolished by Federal troops on July 5,
1863. A trestle bridge was improvised and service resumed on August 11, 1863. In April, 1864 a flood carried off the remnants of two spans and several more spans were carried off in the flood of May 16, 1864. At the end of 2:

Civil War rebuilding of the bridge using wrought iron

I4 Bollman trusses, was started. Two new spans were carried \(25-1\) \(\qquad\)

Page 204 is void.
rail traffic from the Fall of \(1936^{-}\)to the opening of Sandy Hook Bridge in 1947.

The present Baltimore and Ohio Railroad main line
bridge north of the 1894 spans was built in 1930-31 and
opened June 1, 1931. It consists of 13 skew, deck plate girder spans, \(1,365 \mathrm{ft}\). long, each span 100 ft .6 inches

A highway bridge formerly crossed the mouth of Shenandoah. It was built in 1865 as a four span iron, through Howe truss on limestone piers and abutments and replaced an older 4 span covered timber bridge about 700 ft . upstream
```

that was destroyed during the Civil War. The superstructure of the iron bridge was swept away in the flood of 1936.

```

Map of bridges- \(8^{\prime \prime h} \times 10^{\prime \prime W}\) original, reproduction \(3.2^{\prime \prime} \times 4^{n}\)
60.70 434.36 LOCK 338 ft . lIft, constructed 1832-33. The facing is hammer-dressed, gray pebbly sandstone with some Seneca red sandstone. Cut stone is in the quoins and gate recesses. Granite blocks are in the upper part of the lock above the upper recesses. The breast wall is 4 ft . upstream from the upper end of the upper recesses. The lock walls rise 5 ft . above the rest of the lock at the upper recesses. Slots 12 inches wide, 6 inches deep at the head of lock are for drop planks of the stop gate. The miter sill is exposed in the upper recess. A 30 ft . extension at the lower end of the lock is the site of the former abutment of the Wagers bridge. It is built of coursed quartzite rubble and is 4 ft . higher, on the berm

\(4 / \gamma\). abintiani on upstrian sede;
16 ringstones a keystore,
16 ringstomes akeystore,
8 ft . spon culunt along
flumer flume \(12-15^{\prime}\) wide
6 fs. diep, 12 fs . wide f.b
brotks ix face of lnsestrose
\(1 \cos 5-\tan 33\).
Cliffs of quartzies, \(300 \mathrm{FP} \pm\) high

Sinc of
 \begin{tabular}{lll}
face than the rest of the lock. Masons marks are in the \\
chamber walls \\
\hline A deep flume is 20 ft. on the berm. The stop gate for
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{ng path. It was a 2 story, frame structure and was swept} \\
\hline 1 & \\
\hline \multicolumn{2}{|r|}{away in the flood of 1936. A footbridge was formerly over} \\
\hline \multicolumn{2}{|l|}{during the day carul was in op} \\
\hline \multicolumn{2}{|l|}{Ap Amens Ayou burned in} \\
\hline \multicolumn{2}{|r|}{walls are silicic siltstone and quartzite rubble. The rev-} \\
\hline \multicolumn{2}{|r|}{,} \\
\hline \multicolumn{2}{|l|}{etment wall on the river side of the towing path is quartz-} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{ic rubble. The revetment wall on the berm between Locks 33 10- Rutth on rionicer \(=\) umains of old hat-soont thilliges formaty on it.}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{11} \\
\hline \multicolumn{2}{|l|}{wall on the river side of the towing path, 10 ft . above the} \\
\hline \multicolumn{2}{|l|}{\[
13
\]} \\
\hline \multicolumn{2}{|l|}{: level of the towing path, formerly extended from Lock} \\
\hline \multicolumn{2}{|l|}{\({ }^{15-}\) to the Shenandoah Inlet Lock. Glorm sion side, dutrion now in enol hlar} \\
\hline \multicolumn{2}{|l|}{:\% muhathi} \\
\hline \multicolumn{2}{|l|}{:7 Diagram of Lock 33 area- \(8^{1 / \mathrm{h}}\) x} \\
\hline \multicolumn{2}{|r|}{60.9043418 dib.} \\
\hline & 60.90 434.18 OUTCROP A cliff \({ }_{n}\) along the road on the berm \\
\hline & is formed of siliceous siltstone (phyllitic quartzite) of \\
\hline \multicolumn{2}{|r|}{Kint. bands (monoclinal kink bands} \\
\hline \multicolumn{2}{|l|}{22 the Harpers Formation. The beds are crinkle} \\
\hline \multirow[t]{2}{*}{23} & offset jouns \\
\hline & slippage and drag folds along the joints, and crenulations, \\
\hline \({ }^{24}\) & indicative of the intense compression undergone in folding \\
\hline
\end{tabular}

are in the upper part of lock. The lower circular quoins
and the lower part of the lock are faced with fine-grained gray sandstone. Rope grooves up to \(11 / 2\) inches deep are
in the limestone and sandstone at the east end of the lock.

The upper end of the lock is blocked by a wooden gate and embankment. The flume is 15 to 20 ft . on the berm and
\[
14 \text { fl. Lng } 6
\]
there is concrete frame gate, 6 ft . wide, \(\mathrm{x} / \mathrm{ff}\) f. high. with Flume- 6 ft . deep, lined with coursed rubble
insert boards, at the upper end of the flume. The embank- ;
ment on the berm side at the head of the lock is probably
an old approach crib. Lockhouse no. 26 on the towing path
\(\downarrow^{6 r i c k}\) ? (Hahn) - no bricks seen. Lochhouse destroyed in 1936 flood.
Wing \(^{\text {was }}\) formerly a frame structure but only the foundation of Remnant of fender crib on berm at upper end of lock, \(15 / \mu\), hang.
siliceous siltstone rubble remains. An outcrop of Harpers
siliceous siltstone is on the north side of the lock. -Small crenelated anrecanco. Pump at Lock.
422,25- I beam bridge over outflow on tow path.
\(61.67422 .30 \quad\) OUTCROP ON BERM A 30 ft . ledge contains
Harpers siliceous siltstone; the schistocity strikes \(N{ }^{3} 0^{\circ}\) E
61.77 OUTCROP ON BERM Harpers siliceous siltstone is exposed in a ledge. The schistocity strikes \(N 40^{\circ} \mathrm{E}\) and dips \(45^{\circ}\) SE. Fracture cleavage dips \(45^{\circ} \mathrm{NW}\). A prominent joint strikes \(N 80^{\circ} \mathrm{E}\), dip \(75^{\circ} \mathrm{N}\). The jointing and fracturing form a rectangular pattern that is prominent on the face of 7 the cliff.

Diagram- fracture-joint pattern draft- \(6^{\prime \prime h}\) x \(8^{\prime \prime W}\), reduce to \(3^{\prime \prime} \times 4^{\prime \prime}\).
61.82

OUTCROP ON BERM Harpers siliceous
siltstone is exposed in an 80 ft . ledge.
:15-
:6 61.87-62.04
OUTCROP ON BERM A ledge of Harpers
siliceous siltstone is on the berm. Schistocity strikes
\(\therefore \quad \mathrm{N} 40^{\circ} \mathrm{E}\) and dips \(44^{\circ}\) SE. Joints strike \(N 35^{\circ} \mathrm{E}\) and dip \(80^{\circ} \mathrm{NW}\) to
Solution pockets along joints.
vertical; arcuate fractures strike \(\mathrm{N} 25^{\circ} \mathrm{E}\) and dip \(75^{\circ} \mathrm{WNW}\).

Solution cavities, 6 inches to 2 ft . in diameter, are at the
downstream end of the outcrop. Drill marks, 2 ft . long, 4 \({ }^{24}\)
to 6 ft . apart are in the ledge.
MP62-422.55
Intermittent outcrops \(t=422.53\), large one at 422.47, same dip.
\(62.20422,73\) UNFINISHED DAM A masonry wall on the river side of the towing path is the abutment wall of a dam on which construction was commenced in 1859. It was stopped in 1861 by the Civil War. The wall is constructed of dark blue to black limestone from Bentz quarry, opposite mile 87 above Dam no. 4, on the West Virginia side of river. Some blocks have crinkled, dark, clayey bands up to \(1 / 2\) inch wide; other blocks have blebs of calcite. Ledges of Harpers silicic siltstone are in the river. Runtment on rinsich of tropath, tion 34 to now dam Blensoin danm up to \(6 / 4 \cdot l\) my, \(18 / \mathrm{in}\). Thicit, 2,4 . und

62.33 DAM NO. 3 AND GUARD LOCK The masonry
power canal on the west side. The first dam at this site was built in 1799 to divert water to the U.S. Government Armory in Virginia (now west Virginia). It was replaced in 24
\[
25
\] 1809 and 1820. The dam was repaired extensively in 1867 Revitiment along guarduall, \(300 \mathrm{f} \%\). heor cham to outhet bockisi sauth \(t\) Fick 36 .

> p. 202 a.
> \(7 / 26 / 75\).

> New Dam below Damno. 3 .
after ice carried much of it away. A lock with 2 sets of gates was at the entrance to the power canal until Civil preent
War time. The Guard Lock is 300 ft . above the dam and was constructed in 1832-33 with hammer-dressed limestone. The quoins are cut limestone. The lock is 30 ft . long, with two sets of gates. The head of the lock is now blocked by a wooden guard gate. A guard bank with a revetment of Harper silicic siltstone extends from opposite Lock 35 just below the dam to Lock 36 and is now used as the route ed in 1971), formerly carried the towing path across the
:? feeder to the lower end of Lock 35. The canal between

Locks 35 and 36 occupies channels between islands now covered by fill and is very vuinerable to floods. Extensive washouts occurred in 1852, November 1877, Junt 1889, and March 1ф24. An outcrop of Antietam Sandstone (Cambrian) forms a low ledge at the lower end of the guard lock. The
sandstone is quartzitic, dense, banded, and gray to white in color. The banding is 4 inches thich. The strike is \(\mathrm{N} 35^{\circ} \mathrm{E}\) and dip is \(85^{\circ} \mathrm{SE}\) to vertical. The Antietam sandstone is also exposed in ledges in the river at the dam where the surface is stained black. Prominent strike joint in the ledges. The sandstone also forms a prominent cliff on the West Virginia shore wherethe dip is \(45^{\circ}\) ESE. The Potomac

Company canal around Dam 3 was a sluice extending a mile NPS bridge not finished \(7 / 26 / 75\) and \(4 / 29 / 88\).
downstream from the dam on the site now occupied by the
present canal. The C \& 0 Canal was opened for navigation
upstream to Dam no. 3 on November 26, 1833.
\begin{tabular}{|c|c|}
\hline : & 62.32 \(\operatorname{lol}_{422,85}^{42,14}\) LOCK 358 ft . Iift, constructed 1832-34. \\
\hline : & Access to this lock is via the towing path east from Lock \\
\hline & 36. The towing path formerly crossed the feeder on a \\
\hline 22 & timber bridge that is now being restored (1971). The lock \\
\hline 24 & constructed of hammer-dressed limestone with a block of fromknotts Quarry, 5 mi, a way in va. (w,va.). \\
\hline \(25-\) & \\
\hline
\end{tabular}
\[
\begin{array}{r}
2042 \\
7 / 26 / 75
\end{array}
\]

Drydock * feeder at
Lock 35

Seneca red sandstone at the northwest end and 3 blocks of granite at the west end and in the coping on the towing path side of the chamber. A concrete cap is at the lower end of the lock on the towing path side at the abutment for the towing path bridge. The miter sills, are intact in both recesses. A dry dock on north side of lock, built of rough rubble masonry, was 125 ft . long, 24 ft . 5 inches wide at the top, 20 ft .8 inches wide at the base, and 8 ft. deep. 6 concrete barge supports, 17 ft. 3 inches long, \(31 / 2 \mathrm{ft}\). from the bottom cross the dry dock at 14 ft .5 No crib fenders
:3- inch centers. A butterfly valve and a short drainage
tunnel are at the lower end of the drydock. The lower
wing wall of the lock is straight, at right angles to the
lock and extends across the lower end of the drydock. The original lockhouse for Locks 35 and Guard Lock 3 was in a low area enclosed by the guard bank near Lock 36. It was constructed in 1836-37 and was brick, 2 stories high, on a Tratumen hill abro lon, frame, arly

\footnotetext{
foundation umains
}
```

foundation of red sandstone, Iimestone, quartzite and
silicic siltstone rubble. It was later used as a section
house and was heavily damaged in the 1936 flood. Only the
walls and foundation remain.
Outcri on hum in drydork area g fock 35.
An outcrop of Antietam Sandstone forms a }40\textrm{ft}\mathrm{ . ledge
on the berm east of Lock 35.
Bawn hrwem hodes 35.36.
62.40 [ L23.05 423.23 LOCk 36 8 ft. lift, constructed 1832-34.
The facing is mainly hammer-dressed limestone from Knotts
Quarry in West Virginia. A block of Seneca red sandstone
Noflume

```
is on the towing path wail of the chamber. A 6-inch con-
crete cap is above the stone coping except at the lower
 Cross timbers under miter sill at head of lock,
 miter gone.
recess. A 15 ft . long embankment on the berm at the head
of the lock is the remains of a crib fender. This lock was
most troublesome to the boatmen because of its narrowness
and short length (89 ft .11 inches, the only lock on the
canal less than 90 ft . long). The lockhouse was on the hill
 Foot bridge across lock.
[\(\int \begin{aligned} & \text { Wing wall an lur berm: } \\ & 50^{\prime} \text { ling. } \\ & 0^{0}\end{aligned}\)
p. 206 a

7/26/75
\[
\begin{aligned}
& 64.70 \quad 430.25 \quad \text { Culvert } 96 \\
& \text { MP64 } 436.95 \\
& 431.50 \text { Aouth snd of ovarfell } \\
& \text { 431.46-431.50 Ouknop- strike N450E, dip 60 E, 4-6"has } \\
& \text { cuur t wat t math, tr wat is } \in S \\
& \text { 100' wist - visw our Potmenc. } \\
& \text { 431.55-431.68 Outeron, inguler hedgoug to 40'high, } \\
& \text { Et. Long curur east. } \\
& \text { 431.72 Ledge 40'hugh; highty fractuned; } \\
& \text { small } 6 \mathrm{in} \text {, solution holss. Et. } \\
& \text { 431.78 Lidge 20' hyh, promenent unticil pront, N } 30^{\circ} E \text {. } \\
& \left.\begin{array}{cc}
431.83 \\
\text { MP63 } 431.85
\end{array} \text { Ledge } 30 \text { h, Pt dolomin }\right\} \text { curn trant } \\
& \text { 431.90 Bloff 20'high; 40'ahm canal. } \\
& 432.45 \text { Joch } 36 \\
& \text { 432.52 Opprifis mudicig frek 35, onterop on hill } \\
& \text { on trem. Heghly frastued gray } \\
& \text { quantite, 15' hdys. } \\
& 432,64 \\
& \text { - oppostz ripger ind y lock 35- }
\end{aligned}
\]

\footnotetext{
End at 434.55
}
in the woods, 40 ft . above the lock. It is 2 stories high with clapboards on a footing of sandstone rubble. The road
from the northeast comer of the lock leads to the lockhouse.
62.43-(62,47) Boattasin 4 bruow set (Psunticic)
62.48423 .35 HASTE WEIR The waste has a concrete limintmenturps \(p 2062\)
frame with 3:gates for board inserts. A low wall of coursed silicic siltstone and sandstone rubble is at the toe of the spillway. This was originally a masonry overfall constructed in 1834. To the north are old manganese mines and pits of the Potomac Refining Company, which were opened in 1876 by Wells and Davis. These openings were flooded out. In 1898 McIntosh sank a 23 ft . shaft 100 ft . north of the
canal but abandoned it within a month because of flooding.
E. R. Cooper, of Baltimore, resumed operations in 1908 and organized the Potomac Refining Company in 1910. Shafts were sunk to 60 ft . and tunnels extended to the ore. Pumps were installed. However, most of this production was from
pits. The ore is along a faultplane with the Harpers Formation on the east and the Tomstown Dolomite on the west.

It is mainly nodules and slag-like masses of manganese dioxide and iron oxide (
).
62.9 Huctile berry HIII HBO \(\quad 423.69\)
63.00-63.30 (423.76) OUTCROPS ON BERM Low ledges
of Tomstown Dolomite are on the berm. 50'atm casual, gray faces. - 63,00 (MP) \(=\begin{aligned} & 423.81 \\ & 423.81\end{aligned}\) hade \(f t\) dremuk \(=50^{\prime}\) high, narrow ledge 63.30 (424.08) OUTCROP ON BERM An 80 ft . ledge is
formed of blocky Tomstown Dolomite with beds up to 2 ft . thick. 4 joint planes are prominent. The beds strike \(\quad N 40^{\circ} \mathrm{E}\), dip \(30^{\circ}\) SE and are overturned to the west. (424.20) Thin.bedded dolomite, beds \(1 / 8-1 / 4\) in.; irregular, yellow clayey parting.

10 Some beds up to If. thick; strike N30E, dip \(60^{\circ} N E\); darn gray platy beds.
63.31-63.38

OUTCROP ON BERM A ledge, 40 ft.
: high, contains gray phyllitic Antietam Sandstone in 4 to 12
inch beds. The strike is \(N 25^{\circ} \mathrm{E}\) and the dip is \(60^{\circ}\) SE. The
beds overturned to west.

 1 mileatore been. \(2^{\prime} \times 12\) "planks along straus if u mule drums. Towpath formerly ry rap suffer (424.35) (222)

Quarry debris in canzl, yellow olky partings, prominent transverse joints. 211

(Cow Ring Sluice)
level. Houses Falls is in the river. The Potomac Company had a sluice canal 150 ft . long on the West Virginia shore to overcome a drop of 3 ft . at the falls. On wha. side: cut for irm ore for Antictam \(\begin{gathered}\text { Furnace. }\end{gathered}\) MP \(66,00\binom{426,75}{428.90}\) overflow, vevetment \(2 f t\). high, 65 ft . 1 mg .
66.35-66.50 (428.25-428.52)(427.20) OUTCROP ON BERM Four ledges \(\mu p\) to 40 ft . high of dense gray Tomistown Dolomite with numerous calcite veins and gashes are on the berm. The beds are 4 inches to over 2 ft. thick and are highly
fractured. The strike is \(N 20^{\circ} \mathrm{E}\) and the dip is \(37^{\circ} \mathrm{NNW} . \mathrm{A}\) joint strikes \(\mathrm{N} 30^{\circ} \mathrm{W}\) and dips \(70^{\circ} \mathrm{NE}\).
66.7 (427.45) Wood crib dam on berm (Barron) 10 tio , high \(=6 \mathrm{ft}\). bim. logs with fillof redes, blocks
 (434.89 -begin, end Mt.Lock Recreakion 446.35)

The rock is from a quarry in Maryland \(1 / 2\) mile away. Some
of the limestone blocks have shallow round lift holes in
their faces. A pile of old blocks from the lock are on the
25- owing path. Two of the blocks have cuts for circular
quoins. A concrete floor is in the upper recess surrounding
the old miter sill; the miter sill has rotted out. A lower
crib extension, now a lowpile of rubble, is on the berm be-

How the lock. The flume is on the berm 30 ft . from the

Hock and has a concrete culvert 6 ft . wide x 5 ft . high \(15 \mathrm{ff} . \mathrm{mgg}\).
With an insert board waste weir at the head. The slot for
the boards is 12 inches wide \(\times 4\) inches deep. The flume is
\(4-6 \mathrm{ft}\). deep, 10 ft . wide and lined with limestone rubble. Basin at head of look - 100 ft . long ?

The lockhouse is on the berm and was constructed in 1836-37.

It is brick, 1 l/2 stories high. Sinkholes have caused
subsidence in in \(_{434,76)}\) canal canal in the vicinity of the lock.

67.08 (434.98) CULVERT 100 Constructed 1832-33. The

Berm on embankment fofl east of culvert to 435,10 .
coping and semicircular arch are cut, dark gray limestone. 14 ringstmes, keystone, all cut. Spandul *wings hammu chussud.
The arch has an 8 ft . span and a 4 ft . rise and there are

14 ringstones and a keystone in the face. The abutment is

4 ft . high. The parapet and coping are 3 ft . high. The Arcuate wings - same \(n\) berm - tubers ale exposed on berm. 1 off. embankment on berm it revetted, - revetment on berm side of canal at culvert'; loft. reveled embankment above coping on tip. spandrels and parapet are dark garajilimestone rubble. 10 x
Wings \(45^{\circ}, 12\) ftilong at 45:
Recreation - tent camping, toilet, pump
picnic tables
(435,10) Foot bridge; 435,13 pump.

```

is $10^{\circ} \mathrm{E}$, and the dip is $72^{\circ} \mathrm{E}$. Small solution cavities are
In the dolomite dloug a prominent bedding p/ane, 10-30ft. above canal
Fracture NYOE, dip 40y on west end of outcrep - pseudoonkicline.
68,20 (436,18) Sete of culvort no 101- not seen - 40ff.lny, rock-filled gulley on t.p. side
68.22(436.44) (445,25) OUTCROP ON BERM A low ledge contains Toms-
town Dolomite. Lange spring ot hase, stuam, fham oping sints is cavel al 485-18.

```

```

7 68.50 (436.45) t SH.56) SMPELES\$ LANDING/ (BRIENS FERRY) The
3 (444.95) promoutuop to Shaypes Landing trurduoats.
pile of limestone waste on the berm served as a loading
ramp for limestone and lime from Wades quarry and the lime-
:3
kiln at the old furnace at Antietam in the early 1900's.
Culvert 101, a road cuiveri at this site, constructed in
:-Berm m embankmeny to Antietam Aqueduct,
:1833, collapsed.1837 and a bank was placed over it.
(436.555)- Ravim
(436,75) prink forthidye (wades)
68.85 (444.70) SHAFPERS, LANDING This is the site of
a pivot bridge across the canal erected by the Antietam Iron

```
 20.Works after the collapse of culvert 101. Knotts/s/and-quarry in limestme
 bpposik landing.
\(\therefore\) MP 69 (\(436.90 / 444.55\))
 69.34 BRIENS BASIN was formerly on the berm just
 below the Antietam Aqueduct. This inlet masonry is part-
 Probable storm wall water gate to tain. NPS road decends inks canc priam.
 \({ }_{25}\) ally covered but still remains. The basin served as a

 (437,15) Antutinm Rec. Area
 (437.25) Barn \(100^{\prime} \mathrm{C} \times 100^{\prime}\) sloping tanks.

Whaff area for the Antietam Iron Works. The stack of the old furnace, later converted to a 3 stack limekiln, and old brick buildings are intact at Antietam 1,000 ft. east of the aqueduct. The first furnace, erected in 1765 , made cannon balls for the revolution and parts for Rumsey's steamboat in 1786. The second furnace was built in 1845 and rebuilt after the Civil War. Its 50 x 11 ft . stone stack had a capacity of 100 tons per week and was operated until 1883. A forge and nail factory operated from 1831 to 1853. Much of the plant was dismantled in 1891 and the
:5-stack was converted to a limekiln with 2 additional kilns : built on the east side of the furnace. Tram, basin to furnace \(1877 \pm\) \(69.40(437.28 / 488.18)\) ANTIETAM (NO. 4) AQUEDUCI Constructed 1832: \(0-35\), cost \(\$ 25,022.49\) including railing. The aqueduct is 108 ft. long between abutments and has three elliptical arches. The two side arches each have a 28 ft . span and 10 ft . rise. 30 ringstones and a keystone are in the face of each. The

\section*{\(\checkmark\) abutmunt : \(2, A x\)}
center arch has a 40 ft . span and 10 ft . rise with 38 ringstones and a keystone in the face. The piers are 6 ft . thick. The parapet and coping are 7 ft . high. The coping is 26 ft . above the foundation and \(231 / 2 \mathrm{ft}\). above the stream. The towing path parapet is 6 ft . wide at the top and 7 ft . at the bottom. The waterway is 22 ft . wide at the top and 20 ft . at the bottom. Pilasters 4 ft . wide project 21 inches at the base and 15 inches at top at each pier. The foundation pads are rubble capped by rounded arrises 3 ft .8 inches high at the base of the piers. The flared wings are at each pier are 46 ft . long and \(71 / 2 \mathrm{ft}\).

1: thick. The Aqueduct is constructed of gray, wavy -banded

Tomstown Dolomite from a quarry \(3 / 4\) mile to the east. Wooden rail on cquing.
\(x\) Blocks are cut on the bed and joints but faces are rough.

The water table and belt are cut stone. The parapet and wings are coursed scabbled stone. One repair block of granite is in the coping on the towing path side. The
wings on the west contain sandstone rubble. One block of

Seneca red sandstone is in the lower end of the waterway.

Crenulated bedding and other slump features show well on
the weathered faces of the dolomite blocks. Solution marks:
resembling bird foot impressions are prominent on some of the faces on the limestone block. Some blocks in the coping are crumbling along bedding planes and fractures. In the 1900's a timber crib was placed on the upstream side of
the east pier for support and protection. A road formerly
passed under the aqueduct. The aqueduct was breached in

1859 and extensive repairs were required. on July 21, 1864
the Confederates blasted down the berm side to the arches
and the ringstones were torm out. The towing path side
was blasted down two-thirds of the face and a 20 ft . section
of the center arch was destroyed. Tne aqueduct was rebuilt
in 1864 and vertical iron rods were, installed for support. now seen on berm side The aqueduct was restored by the National Park Service in

Foot bridges (\(437.45,437.50,437.70\))
(437.80) ind y recreation area.
(433,95) (443,50) MP70

CULVERT 103 ; Constructed 1832-33. The
coping and semicircular arch are cut limestone. The arch has a \(\$ \mathrm{ft}\). span and a 2 ft . rise with 10 ringstones incl skewback.
and a large prominent keystone in the face. The parapet
+loft, embankment above coping.
and coping are \(11 / 2 \mathrm{ft}\). high. The spandrels, parapet and
\(45^{\circ}, 10^{\prime} \mathrm{long}\) Same on berm, abutment \(14 y . h i g h\).
wings \(\wedge_{\Lambda}\) are limestone rubble. There is a 2 ft . drop at the
Sink an berm of prism 10 ff. diam. \(\times 10\) ft. deep.
front of the pavement on the riverside. From this point to

Shepherdstown there are embankment on the berm.

(438.65) Strmumall mim, conned nubble, \(200^{\prime}\) long, an culprit \(t=(438.70)\)
70.78 (438.68) CULVERT 104 MILLERS BASIN Culvert conBaric cast of culunt \(=70.68\). Stzuwall on lame 125 fy long, wharf, werchace.
structed 1832-33. The coping and semicircular arch are cut gray limestone. The arch has a span of \(4^{6} \mathrm{ft}\). and a Atculont, to conch, aid
 Wring walls flans, 10 yr . long. \(\longrightarrow\) parapet are coursed limestone rubble. Wake from sawmill from ensal.

```

but numerous closely-spaced fractures are present. The
upper beds above the prominent ledge have several changes
in dip because of small folds. Ledges in the river, ex-
posed at low water, dip steeply to the east and the direct-
ion of the ledges is offset upstream at the center of the
river by a change in strike and difp,
Berm embankment with road, Millers Sawmill to (438.85) = 71.05.
71.58(439.46) CULVERT 105 Constructed 1833. The cop-
ing and semicircular arch are cut limestone. The span of
the arch is 4 ft.; the rise is 2 ft. The parapet and coping
are }3\textrm{ft.}\mathrm{ high. The culvert is filled to the top of the
arch with silt and debris (1971). Wring at Rt,L, 4% long, 10g%.
Emtankment aton culurt.
71.65 (439.65) POTOMAC CEMENT COMPANY Vertical cement
kilns are 350 ft. north of the canal. 1 kiln in front is
facing the canal and 2 are on the west side covered by a
barn. The arches over the hearths of the kilns are brick
and the faces above the hearths are limestone. The kilns
Pile of strue govasts dump along nad to 439,70.

```
\begin{tabular}{|c|c|}
\hline & wexe bullt in 1888- by William H. Blackfora and had a cap- \\
\hline 1 & acity of 300 barrels per day. They were operated until \\
\hline 2 & \\
\hline 3 & 1903. The limestone for the manufacture of the cement was \\
\hline 4 & from a quarry in the Elbrook Formation behind the kilns. \\
\hline 6 & (Mathews and Grasty, 1910). The kilns back against a \\
\hline 7 & terrace of tan silty sand with water-worn cobbles up to \\
\hline B & \\
\hline 9 & 6 inch size. \\
\hline 10-. & Similar old kilns are on the west Virginia side of the \\
\hline ! & \\
\hline 12 & river at the old Botelers and Reynolds cement mill. Bot- \\
\hline 13 & \\
\hline & eler's mill originally ground flour but was converted to \\
\hline \multicolumn{2}{|l|}{14.} \\
\hline & grinding cement and the kilns were erected in 1828. \\
\hline :6 & \\
\hline i & Botelers and Reynolds mill supplied most of the cement used \\
\hline & In the canal up to 1834. The mill was burnt by Federal \\
\hline 19 & \multirow[b]{2}{*}{troops in 1861.} \\
\hline & \\
\hline \(20-\) & \\
\hline ? & \[
(439,60)
\] \\
\hline 22 & \(\wedge\) A low dam formerly crossed the river at this point but \\
\hline 22
23 & straygt hing acrouth \\
\hline 24 & indicates the location of the structure. The dam was built \\
\hline
\end{tabular}
by Dr. Henry Boteler in 1822 for power for his mill. The pool
dam was a timber crib 3 ft . high and to Shepherdstown
making it possible for boats to cross river and enter

Shepherdstown inlet lock. Much of the crib work was carried
off and the abutment washed badly in the flood of october,
1873. The dam was destroyed in the flood of 1839.

Packhorse Ford, also known as Blacksfords and Botelers

Ford, crossed the river here. An old game trail was adapt-
ed as a ford in 1736 and used until 1755 when a ferry was
established at Shepherdstown. The Confederate army in the

Antietam Campaign of September 1862 used this ford.
71.75 Amall drain inter canal, teritu crib *reprap for dock-not located. (440.00) MP 72.
72.47 (440.40) NORFOLK AND WESTERN RAIIROAD BRIDGE Concuk wall aloug canal on tip. arthidgi
This bridge was constructed 1908-09 by McClintic-Marshall 80--

Corporation of Pittsburgh, Pa., as a replacement for an
\({ }^{22}\) older bridge 500 ft . upstream. The concrete piers and steel 29 trestle towers support a single track, 5 span, steel deck

Pratt truss over the river and 7 plate girder deck trestle spans on the north. 1 deck plate girder span is on the south approach. The bridge carries traffic of the Shanandoah Valley Branch, Norfolk and western Railroad, between Hagerstown, Maryland and Roanoke, Virginia. An old canal wharf is on the berm west of the bridge.

Rounded hills 35 to 100 ft . above the canal to the north are terraces with well-rounded sandstone and conglomerate boulders up to 2 ft . size in tan silty sand. Rounded cobbles up to 8 -inch size are common. River lock, 72.64 (440.52) SHEPHERDSTOWN IAETEP LOCK Constructed Bridge piers 50, \% to east.
1833-35. The facing is hammer-dressed limestone. The circular quoins at the river end of lock are well preserved; The river end of the lock is now open and the canal end is blocked by a wall of limestone rubble and earth fill that serve as part of the towing path. Abutments of the old 25 -
towing path bridge are at the upper circular quoins and wings at the entry to the canal. The lock was abandoned in 1889 after the flood washed out Botelers dam that formed the pool on the river side of the lock.

Piers of the old bridge of the Shenandoah Valley Railroad (now Norfolk and Western Railroad) are on the east 9
side of the inlet lock. They were constructed in 1880.
\(\therefore\) They are 20 ft . wide, 15 ft . thick at canal level and 20 ft .
\(x 10 \mathrm{ft}\). at road level. They are 50 ft . high and are built

14
of wavy.banded, gray, rough-faced limestone blocks, 18
based on timber cribs,
inches thick, up to 4 ft . long and 3 ft . Wide \(\underset{N}{ }\) Iron braces

5 ft . apart are in the upper half of piers. Vertical \(L\)
beams at the top of the piers supported a deck between
the trusses. 5 piers carried a 5-span, steel deck Pratt
trusses with curved lower chords over the river. A 5-span
plate deck girder bridge with trestle supported by 4 towers
was on the north approach. The bridge was dismantled in
1909.

Wall for when f on \(W, V_{a}\), side griever.
The monument on the south side of the river at the
top of the bluff is a memorial to James Rumsey, inventor
of the steam boat. The first trial trip of his boat was
at Shepherdstown in October 1783. The boat was rebuilt an d
a trial trip at Harpers Ferry was made in March 1786. It was demonstrated at Shepherdstown on December 3 and 11,
1787. Rumsey was an engineer with the Potomac Improvement

8/15/75 the hame \(t\) here

13
72.80 (440.70)

LOCK 38 SHEPHERDS LOCK 5 ft . lift,

Can alomater
FCC \(=9463.4\)
Shepht - 94697

Stone walls, bridge abutment to flume culvert on berm.
constructed 1832-33. The face is hammer-dressed, gray and
black Conococheague limestone quarried directly opposite
the lock on the West Virginia side of the river. The
limestone rubble walls on the berm side of the lock extend to
an old basin above the lock. The lock had a lower extension timber and bolt on north side of mound still in place.
and low embankment on the berm below the lock is a remnant
Extension; storm wall on berm \(25 \mu\) h, blow triage abutment.
Old bridge abutment near end of extension, pier on prism side of trow path. Stone wall- sloping to end of extrusion ally prim side g tropenth, stree wall, metical, slightly flans for \(50 f t\). hond anis donnoriam.
\(22 \mu y\).
of cribs. The flume was on the berm and was 5 ft . wide, 4 ft. deep, lined with limestone rubble. The culvert at the lower end of flume is a semicirouiar arch with a 5 ft . span and a \(21 / 2 \mathrm{ft}\). rise. It is faced with cut limestone.

The lockhouse was built in 1837-38 and was a brick structure, A tinier fist washhouse was on the herm suede between the lat and flume.
2 stories high. It was on the towing path but was carried Knodes ferry inn - ruins of ferry Inn on berm in midden link. Burned 1972 ; built in /ate 17001 s. 2 stay Kinitur. away in the flood of 1936. The limestone abutments 150 ft .
:: east of the lock formerly carried a timber highway bridge recess, conenti, asphalt heads up tr it; wed as pit 1936 hedge om canal tiny. over the canal. The original pivot bridge at this point was built in 1834-36 to connect with Blackfords (Thomas

Swearingens) Ferry which was operated across Potomac from 1755 to 1850. It was burnt, by Confederate troops in July
1864. A new pivot bridge was built in 1866 and a fixed pony (open) timber truss was constructed in 1884. A revetment wall is along the towing path for 150 ft . below the bridge site. The wall on the berm below the bridge abutment is flared and is 30 ft . long. fury.
c- heavier floor placed on it. The bridge was purchased by the State of West Virginia in 1929. The entire bridge was carried away in the flood on March 18, 1936 (Welshans, 1937) and only the piers remain in the river. 300 ft .
downstream from present highway bridge. A ferry ras reestabp
lished until a new bridge was constructed by the Maryland
State Roads Commission. The new bridge is a 6-span, Wich-
ert type, continuous deck steel truss. It is \(1,021 \mathrm{ft}\).
long, 72 ft . above low water level and was opened july 15,
1939 . It cost \(\$ 250,000\).

Shepherdstown, on the West Virginia side of the river, was founded in 1727 as New Mecklenberg. Thomas Shepherd incorporated the town in 1762 and the name was changed to
\(\therefore \quad\) Shepherdstown in 1798.

stone. A 10 ft . zone of beds 1 inch thick are in the middle part of the outcrop. The strike is \(\mathrm{N} 10^{\circ} \mathrm{E}\) and the dip ia \(35^{\circ}\) ESE. Joints strike \(\mathrm{N} 55^{\circ} \mathrm{W}\), dip \(84^{\circ} \mathrm{NE}\); N \(50^{\circ} \mathrm{E}\), vertical; \(N 30^{\circ} \mathrm{E}\), dip \(70^{\circ}\) SE. Small caves are at the center and north
42.15. 472,22

Limestone, 3 fife end of outcrop, 20 ft. above canal. The north cave opening is 3 ft . high x 2 ft . wide.
un to 200 g . high
4 to bin. hes, Shins.
atrijur argent
aral. App \(30^{\circ}\)
472.22 ravine
73.26

OUTCROF ON BERM An 80 ft . cliff of

Conococheague Limestone is on the berm. The beds are mass-
472.22 outcry of limestoris
\(6 \min . t 2 / 4\)
ive except at the northeast end of the outcrop where beds
are 4 to 6 inches thick. The strike is \(N 5^{\circ} \mathrm{E}\) and the dip
is \(30^{\circ}\) 玉. Flat, weathered surfaces show angular breccia

fragments 3 to 6 inches in size.
hes. Shine of
beds it outrange
t. canc. by
\(45^{\circ}\) uperiam

 N2OE, dip \(35^{\circ} \mathrm{NW}\) (up stream)
470.94 Cliff on berm, 60 ff .high, lImestone

ing and arch are cut limestone. The arch has a \(\not \subset \mathrm{ft}\). span No wings
and a 3 ft. rise. 6 ringstones and a keystone show in the (stirs)
face of the arch. The parapet and coping are 10 ft . high. 10 ft , wall above arch to coping; coping at towing path level.; no wings, grades into dry

 \(35^{\circ}-5\) mouth fact, not bedding

 471.82 - Ledge of limestonc 200 pr . hyes, 100 ft . Tack fram hmm ; similer at 472,90

The parapet is coursed limestone rubble. The culvert is
filled to the top of the arch with sediment (1971). Same berm, ino 40. Limestme on berm
\(\leftarrow 4.5\)
\(73.57 \quad 470.60\) \(472.50-472.56\) OUTCROP ON BERM A cliff 100 fit. high, 472.48
disembrevins
oflurp.

300 ft . long, is formed of Conococheague Limestone. Beds Iimultrec clceand, thin heded.
are 2 to 6 . inches thick and strike \(N 30^{\circ} \mathrm{E}\), dip \(80^{\circ} \mathrm{SE}\).

This miluag appans \(73.70^{\text {? }}\) 47,20 Camel dremstry \(\rightarrow\) at 472.52 9ft.!'; looks lire bft
 \((471.74)(472.95)-\) MP 74
completed 1832-34. The face of the lock is nammer-dressed Conococheague Limestone quarried in Virginia near Sheperdstown. The stones are up to 8 ft . long, \(31 / 2 \mathrm{ft}\). wide, 1

\section*{Canal dementict}

to \(1 / 2 \mathrm{ft}\). thick. Two types of limestone are in the lock. One has a rough surface, irregular bedding, with black chert lenses up to 4 inches long \(x 3 / 4\) inch wide, and rectanguiar breccia fragments 1 to 6 inches in size. This is best seen in the revetment at northwest end of lock. The
other type of limestone is fine grained, regular, thin bed-
ding, smooth surfaced, cut by dense gray, very thin, irsuibbing post on towing path at lower ond of lock; flume on [bocm].
regular calcite veinlets. In the lower four tiers below the
old water line, flat surfaces contain "bird-foot" solution marks up to \(1 / 4\) inch deep. Solution ribs on limestone protruce \(1 / 4\) inch. The miter sill is intact in the upper recess, but only bolts remain in the lower miter sill. The
flume is 26 ft . on the berm and has a concrete waste gate \(5 \quad 5 \quad 6 r^{-8 p r}\) key down a lory then at the head. The gate is \(\delta \mathrm{ft}\). wide \(\mathrm{x} \& \mathrm{ft}\). high, with flume bpoe wide ; concent wing, \(15 \not P \cdot\) dis.
slots for insert boards. A 20 ft . mound on the berm upper Boulders on berm.
end of the lock is the remains of a fender crib. A snubbing
post is on towing path at the lower end of the lock. The
brick foundation for the lockhouse is on berm at upper end
of lock. It was constructed in 1836-37.
 home wring se onto flume drawing.
74.05 CULVER' 108100 ft . upstream from
the lock, constructed 1833. The semicircular arch has a
 span of 6 ft . and a rise of 3 ft .12 ringstones and a key-

 stone are in the face. The abutment is 3 ft . high. The

river side end of the pavement. The ringstones and coping cut limestone; the rest of the culvert is coursed limestone

\section*{Blase dine with shiny black partings}
rubble. \({ }^{\text {Limestone }}\) crops out on the berm side of the culvert
and the beds strike \(N 19^{\circ} \mathrm{E}\) and \(\operatorname{dip} 45^{\circ} \mathrm{WNW}\).
Discontinuous outcrops on lnm 470,10 to wast wain

board insert waste. The base and wings are limestone rub-
bile. The original overfall at this site was constructed No paddiks.
1333.

74,12- Time posy or time marker - originally bpth.igh; 3 fr. high, wald be stub of tckphome pole,
\(\times 74.15\) Dry slope wall, riverside Towpath; upstream for 0.9 mi jot seen, checked thonnghly.
\(\checkmark 74,22\) Section dock , building foundations = Company House 74.24469 .94 CULYERT-109 Constructed 1833. The irregular
arch is cut gray, orange stained, limestone and sandy lime12 ringstmis \(=\) hectors; 3 ft , drop at front; parapet, coping \(2 \beta\). stone. It has a 6 ft . span, and 4 ft . rise. A large eth bankment 8 ft. abr coping. Berm face battered, 1 fri in 6 ft . Rest of culver same as un towpath. hit no parapet on hame. Outcry in Ethan. No wings on Towpath side canteddringstone gives additional rise. 112 ringstones and Sink in middle of prism over culvert
a keystone are in the face. The abutment is 3 ft . high. The parapet and coping are also 3 ft . high. The coping is

cut 8 ray limestone and the abutments are red sandstone.

The spandrels, wings and parapet are coursed limestone
rubble. Some gray sandstone and gray brown quartzite are

in the abutments and spandrels. The pavement is concrete. and stone. The inner ring courses limestone rubble. There is a 4 ft . drop at the mouth of the culvert. A \(21 / 2\) story section house 18ft. by 33 ft . is at the upper end of the stone wall which extends along the berm. 300 ft . west of the culvert on the river side is a small pumping station
for Sharpsburg water supply (74.30).
74,26 - Pumping plant, Sharpsburg water \(10 / 4.58\). at rivers edge
469.90 outsirp of himutime; how hege 108 yos, from trom; face of ledge Mainded.
74.27-75.00 TERRACE ON BERM The front of extends to 468.90
the terrace is at canal level and the terrace rises gently
to the base of the limestone hill, 100 to 300 ft. from
canal.
74.50-75.50 This section of canal had frequent \(469.25=75 \mathrm{MP}\).
breaks because of fissures and sinkholes in the limestone
beneath the flood plain and terraces. 468.84-468.95 wodrwater; up to 300 f . wedr.
75.29468 .85 . Killiansbury Cave, H.8.O.
\(75.63468 .84 \quad\) OUTCROD ON BERM A bluff 70 ft . long
and 100 ft. high is formed of gray, massive Conococheague
468.64-468.82- diecmitunerm hidjes of Dimistric

Berm embankment 469.05

the walls. A small spring issues below the clay floor. The
cave entrance is 10 ft . high and 10 ft . wide reducing to a
small crawl way 20 ft . in. The limestone beds are cut by closely spaced fractures at right angles to the beds. Joints strike \(N 65^{\circ} \mathrm{W}\), vertical; \(N 70^{\circ} \mathrm{W}\), dip \(80^{\circ} \mathrm{S} ; \mathrm{N} 60^{\circ} \mathrm{S}\), din \(55^{\circ} \mathrm{SE}\); \(\mathrm{N} 35^{\circ} \mathrm{W}\), dip \(80^{\circ} \mathrm{SW}\).

A second cave is 40 ft . above the canal level. The
entrance is 20 ft . wide and 18 ft . high. A large, triangularshaped, passage extends 40 ft. but narrows and lowers to 4 ft. high. Joints are similar to those in the lower cave; an additional joint strikes \(N S^{\circ} \mathrm{W}\) with a vertical dip. The limestone at the front of the caves has ribs etched out by solution. The ribs are vertical and spaced 2 to 4 inches. The caves are in the Conococheapue Limestone which strikes \(\mathrm{N} 25^{\circ} \mathrm{E}\) and dips \(35^{\circ} \mathrm{NW}\). The axis of the caves are along the strike.
```

75 ft . east (upstream) is a cave opening $4 \times 4 \mathrm{ft}$. in (468.51)
size, 30 ft. above canal The rock is stained orange from the silt fill of the cave.

```

Killiansburg cave was used as a refuge for inhabitants
Continuous outcrop

Sharps burg
of Hagerstown during the Civil war in 1863.
75.78 Rerrkment wall on Vrupeoth; loony straightway.
\(75.80468,40\)
Prominent wall on towpath. ON BERM A small, low cave opening; 8 ft . wide, 2 ft . high, is in a ledge 20 ft . above the canal. 300 ft . east (upstream) two solution openings are in a ledge. They are 1 to 2 ft . in diameter. Conococheague limestone forms the ledges with beds 2 to 6 inches thick striking N \(35^{\circ} \mathrm{E}\) and dipping \(35^{\circ}\) to \(45^{\circ} \mathrm{NN}\). 468.30 . Two caves, \(50^{\prime}\) " \(60^{\prime}\) above the canal; \(10^{\prime}\) aide, 4-5'hijh 200 p . avith of small op ming
75.90468 .29 SMALL SOLUTION OPENING In a ledge on the berm, 45 ft . of canal is a solution opening 3 ft . wide and high. Soil and debris are spewed out below the opening. The second opening is 30 ft . above the canal, 200 ft . to the east (upstream). Strike of beds \(N 30^{\circ} E\), dip \(40^{\circ}\) mposthenn; untival joint turds \(140^{\circ}\). Buds up \(t 4\) fy. thick. Disemtinuous outcrops to west\%
75.95-76.10 OUTCROPS ON BERM Discontinuous ledges of fractured. Beds strike \(N 35^{\circ} \mathrm{E}\), dip \(45^{\circ}-60^{\circ}\) upetham: massive Conococheague Limestone:are on the berm. 76 MP - Small cave, \(\rightarrow 4 / 4\). diem, \(30 f t\) above canal.
\(76 \mathrm{MP}-468,20\) - upper and of aral.
76.17 468,00 CAVE ON BERM The entrance, 3 ft . wide
and 4 ft . high, is in a ledge. At 6 ft . in the passage
drops 5 ft . to a narrow walkway 125 ft . long. The trend of
the cave follows the strike of the rock beds. The conoco-
cheague Limestone is highly fractured and strike \(N 35^{\circ} \Xi\)
with a vertical dip. Joints strike \(N 60^{\circ} \mathrm{W}\), dip \(60^{\circ} \mathrm{S}^{\prime} \mathrm{N}\), beds of limestone on tow path side Revetenent sins wee.! \(\mathrm{N} 40^{\circ} \mathrm{E}\), dip \(45^{\circ} \mathrm{NW} ; \mathrm{N} 85^{\circ} \mathrm{N}, \operatorname{dip} 45^{\circ} \mathrm{N} ; N 70^{\circ} \mathrm{W}\), dido \(60^{\circ} \mathrm{NE}\).
 \(467.80-468.05\) Revetment wall alg towpath'
 76.58 467.60 SIIXERT 111 Constructed 1833. The coping
and semicircular arch are cut limestone. The arch has ar

> (lice. skók)

3 ft . span and 4 ft . rise with 6 ringstones on the north,

> No wings

5 on the south, and a keystone. The abutment is 7 ft . high. East ahoumux ifi.migh, crnerits.
The lower 5 ft . of the abutment is concrete. The parapet
and coping are 3 ft . high. The spandrels and parapet are 10 ft : embankment above coping.
mainly of limestone with some sandstone. 3 ft . of dark Limestone outcrops on berm in stream.

Turning basin，25在 long on berm at culvert；timber dock to west． Snyder Feed warehouse on west－hal y of dock．Concrete bridge pier 10 ft， west of dock．Remnants of stack wall is 20 fe，East of bridace
gray to black organic sandy silt is on the flood plain．It On berm，dark gray，wary bedded limestone，strike of teds N40 \({ }^{\circ}\) ，，renter dip． is exposed in the ravine downstream from the culvert．
 7ó． 65 SHARPSBURG（Snyder）LANDING An old sec－

tion house is in ruins on the berm．It was formerly a
frame structure， 2 stories high．A foot bridge is at the
site of the old swing bridge．The concrete abutment of the
swing bridge is on the berm with 2 ring bolts．A concrete
pier 10 ft ．out from berm and a similar pier and abutment Cable bridge piers 10 ft．wet of dock．

The are on the towing path side of the canal．ASnyder Coal and

Grain warehouse was formerly on the berm．It was washed
out in 1936．Sinkholes in the limestone gave considerable
trouble in this section of the canal．
76.66 footbridge－gore m 1975.
\(76.69 \quad 467.48 \quad\) OLD OVERFALL．The limestone revetment on extends 47 paces to south，crossing three ravines
76.87467 .38 Service brace，Sngders Landing beat lament，triplet（1975）
the towing path is the site of an old overfall， \(18 f 4\) wide．
76.75

CULVERT SITE The limestone revetment
and boulders of sandstone are at the site of a former culvert．
\(466.34-466,35\) Towpath revetment 244 ．high
466，50 Tower and of tum intiakment．
40 pawn writ of MP 78 is lowe end of surviment．
467．13－MP 77

The parapet is coursed limestone rubble on the towing path
8 ft high; no wings; sewer pipe (ceramic) below parapet.
side. \(A\) The rest of the culvert is buried. A \(21 / 2 \mathrm{ft}\).
vertical sewer pipe on the berm curves to a horizontal pipe Berm had wings \(b_{6} / 6\)
beneath canal and carries the present drainage.
 \(465.90 \quad\) rifles infect incurious, berm on embankment.
79.00465 .30 (MP) TERPACES ON BERM Wide flats at 20, 45,
and 60 ft . above river level are covered with gravelly soil.

A \(V\)-shaped barrage is in the river. (seen in 1475)
79.25 464.95-Footbriage, \(V\) in sine.

35. Gray Conococheague Limestone is in the berm walls. The
lower 3 tiers are smooth-faced; tiers 4 to 7 from bottom
are rough hammer dressed and the top 2 tiers are smooth
faced. The smooth-faced limestone is dark gray, wavy banded. The hammer-dressed stone is light gray and fine grained. The wall on the towing path side is all smooth faced. The circular quoins have \(1 / 4\)-inch deep solution rills. The

The limestone is from a quarry on the Potomac River, West Virginia side about \(1 / 2\) mile from the lock. The lock was partially rebuilt after it collapsed into a sinkhole. A wooden stop gate and earthen embankment now blocks off the
upper end of the lock. The flume on the berm is 20 ft . from the lock. A concrete waste weir is at the head of the flume and is a single gate 4 ft . wide and 6 ft . high with flume s ff. ids.
insert boards., The mound at the upper end on the berm side
is probably the remnant of a fender crib.
Large vive cortes a boulders, up p to 3 tr size, in flume hear conoutd area. The lockhousen on the berm. It was built in 1836-37 156 ft . tack on ham.

\section*{linustore / cttcen}
and only the stone foundation remains. The meadow on the
berm is a terrace rising inland from the canal level to 40 ft . above the canal. Another terrace is 80 ft . above the canal. Founded sandstone boulders from the terraces
 are in the floor of the lock chamber.
79.59 464.62 NASTE WEIR A concrete frame waste, 12
\(f t\). wide, has openings each 3 ft . wide with insert boards. , Hone left in 1975

Some boards, 2 inches thick, 6 inches wide remain in the
- concuk
slots. A limestone revetment is on the river side of the vertical blocks (limestone) of floor of the spillway
spillway. The original overfall at this site was construct-
ed in 1835. A terrace on the berm is at towing path level.

 79.6446 .60 Howeshor Bund H.8.O. (Should h 464.60)
79.83 464.45 REVETMENT WALI ON TOWFATE This prob-
ably the site of an old overfill or culvert. Lang grey \(t\) inn, 42 paces liny; wally coth and limestree ruth.
79.88 464.30 CJLVERT 114, Roses Culvert Constructed
1833. The coping and semicircular arch is cut limestone. The arch has a 4 ft . span and a 2 ft . rise. 8 ringstones and a keystone are in the face. The abutments are 2 ft . high. The parapet and coping are \(21 / 2 \mathrm{ft}\). high. The spandrels, parapet and wing wall on the west (downstream) Wing on domethem, tropethinde flame \(45^{\circ} ; 15 / 4 \cdot / \mathrm{my}\).
are coursed limestone ruble. A ledge of conococheague

Limestone is at the base of the culvert on the towing path side. The limestone is black, dense to fine grained with Outcry in ethan ox tum ales.
wavy bands of orange clayey limestone \(1 / 4\) inch thick, space-
ed 1 to 2 inches. The beds strike \(N 20^{\circ} \mathrm{E}\) and the dip is
vertical inioruan of 464.15, sinctiol \(3^{\prime} \times 3^{\prime}\) on hams swallow o with \(=1 / 8\) yo. (1975).
MP 80. 464,25
80.05 diatom from MPG OK OUPCROP ON: BERM A \(30^{40}\)-ft. ledge of mass-
live, dark gray, finely crystalline Conococheague Limestone
is on the berm. Calcite veins 2 inches thick are parallel
to the beds. Rills to a depth of \(1 / 16\) inch are on the sur-
face of the limestone. The beds strike \(N 10^{\circ} \mathrm{E}\) and dip
\(35^{\circ}\) ESE. Joints strike E-W and the dip is vertical. Cleavage which strikes \(N 27^{\circ} E\) and dips \(52^{\circ}\) ESE, appears as false
bedding. Fractures strike \(N 80^{\circ} \mathrm{W}\) and dips \(45^{\circ}\) S.
464,15 - Limestimi revetment sloping up to 10p., towpath riverside, 100 paces long.
 80.23-80.27 464.05-463.95 OUTCROP ON BERM Conoco-
cheague Limestone in ledges up to 120 ft . high is exposed
on the berm. The strike is \(N 35^{\circ} \mathrm{E}\) and the dip is \(80^{\circ} \mathrm{SE}\) at the north \(45^{\circ}\) s. joints the 463.95-464,00 Rok nuctment \(1-4 \mathrm{fl}\). high; daunted though-
80.40 OUTCROP ON BERM Conococheague Limestone
is in a cliff with the vertical face parallel to the canal. The strike is \(N 10^{\circ} \mathrm{E}\) and the dip is vertical.
80.45463 .72 GUS WERT 115 MONDELL Constructed 1832Stone wall to ft. lory at Strop howe on berm.
33. The coping and semicircular arch is cut limestone.

The arch has a 6 ft . span and a 3 ft . rise. 10 ringstones on hum-8ringatmes (including skewback) - Kuystrme
and a keystone are in the face. The abutment is 3 ft . high.

The parapet and coping are \(31 / 2 \mathrm{ft}\). high. Spandrels and
parapet are coursed limestone rubble. An 8 ft . dry wall of cunard at mads.
limestone is above the coping l A ledge of Conococheague
Limestone is at the base of the culvert on the tow ing path
 side. The strike is \(N 3^{30} \mathrm{E}\) and the dip is vertical. Tan colored travertine, in a bed 1 to 2 ft . thick, sloping \(10^{\circ}\) towards river, is on top of the bank on the towing path side. Walls of the old Harris warehouse are at the bend in the the road on the berm. It is made of coursed ConocoCheague Limestone rubble. No wings

80.9.0- Itoncivill on bum, sik of Hanies wanehace. 80.95 TAYLORS LANDING (Mercersville) A reverment of coursed, trimmed rubsk 1 imestone is on the berm. An outcrop of conococheague Limestone is at the east end of the revetment.
west of Taylors Landing there are low terraces on the berm 15 to 20 and 45 to 50 ft . above the canal. Extensive lime-: stone karren ledges are on the hill behind the terraces. 81.00 NPS budy - Jaylastanting Bret Famp 463.29 MP81: 463.36.
81.04 CULVERT 116 MARSH RUN MIDDLEKAUFFS BASIN

Baxin = 81.62
Constructed 1832-34. The coping and semicircular arch is cut limestone. The arch has a span of 10 ft . with a 5 ft . ince, shbt
rise. 14 ringstones and a keystone are on tne river side. ince-shurtack
16 ringstones and a keystone are on the berm. The abutment is oft. high on the river side and 4 ft . high on the bern. The parapet and coping are 4 ft . high on the river side and 12 ft . high on the berm. A 6 ft . embankment above coping is on the river side: Limestone wing walls on the berm are 36 ft . long on the east and 48 ft . on the west.
```

The spandrels, parapet and wing walls are coursed limestone change in
Falls within culvert.
rubble. Conococheague Limestone crops out on the creek

```
4.62 .18
\(=42.66\)
``` No wing on west; revetment wall 20ft. b ing on east at \(45^{\circ}\); serves as wings. north of the road. The strike is \(N 5^{\circ} \mathrm{E}\) and the dip is \(35^{\circ} \mathrm{E}\). B1.91 462.40 SPRING A timber-cribbed revetment on
on the river side of the towing path, 20 ft . high holds
the embankment above a large spring. \(2 f\left(\operatorname{cosec} \times 6^{\prime \prime}\right.\) deep \(\times 2 f t /\) roe (flow, 1975) Partly wacke art housel under fill blow 32.00 461.87.MP82 CLIFFS ON WEST VIRGINIA SIDE OF RIVER
```

The Conococheague Limestone forms continuous cliffs along

Whitings Neck.
82.46461 .18 Big Woods H. B, O.
$82.20462^{?, 18}(46 i, 18)$ TERRACE ON BERM A broad gently sloping
meadow at canal level is strewn with gravel.
$462.18-461.51$ (meadow) - 461,30 (woods) terrace.
$460.93-4 p 83$
$460.93-M P 83$ OUTCROP ON BERM The Conococheague Lime-
83.13
stone forms a ledge. The strike is $N 5^{\circ} E$ and the dip is

45° E. Discontinuous outcrops are to the west.

260 pans frame Bung en Cave = Chester of Springs: Ar om Agings

83.31460 .52 BERGEN (DAM NO. 4) CAVE The entrance is on Strum exits at intherver y can, anole few.

the berm in a low ledge of Conococheague Limestone. The strike is $N 10^{\circ} \mathrm{E}$ and the dip is $55^{\circ} \mathrm{E}$. The limestone is dense, gray and cut by cleavage striking $N 60^{\circ} \mathrm{W}$ and dipping $65^{\circ}-70^{\circ} \mathrm{SW}$. The cleavage forms plates $1 / 2$ to 2 inches thick. Joints strike $N 10^{\circ} \mathrm{E}$, dip $45^{\circ} \mathrm{W}$; $N 80^{\circ} \mathrm{W}$, vertical. The cave entrance is 15 ft . Wide and 20 ft . high witha passage of similar dimensions extending north for 100 ft . The floor rises gently and small stream is on the floor. At 100 ft . the cave is offset to the east end and the passage is 4 ft. wide and 4 to 6 ft . high for 40 ft . to the north after which it gradually reduces to a crawlway with a pool. A side, fissure passage on the east of the main passage connects with the domepits 30 ft . high (Davies 1961, p 39-41; Franz \& Slifer 1971, p.74-75).

CAUTION- THE CAVE EXTEND INTO THE ZONE OF TOTAL DARKNESS; LIGHTS ARE NECESSARY BEYOND THE FIRST FIFTY FEET;
460.48- outerre, Mage 100 ff . high, beds strike $N 10^{\circ} \mathrm{E}$, dip 45° dounathem; beds $2-6 \mathrm{im}$.

THE FLOOD IS SLIPPERY. DO NOT BREAK OR REMOVE STALACTITES;

LOOK, PHOTOGRAPH, BUT LEAVE THEM FOR OTHERS TO ENJOY.
83.5. Site of cuburt 117 -not seen (1975)
83.62 460.20-460.16 OUTCROP ON EERM The Conococheague

Limestone forms a ledge 30 ft . high. The beds strike $\mathrm{N} 25^{\circ} \mathrm{E}$ and dip $80^{\circ} \mathrm{E}$ to vertical at east end and $70^{\circ} \mathrm{E}$ at west end. beds 6 in. to ifs. Which
$83.74460 .10 \quad$ OUJTCROE ON BERM Sketched 40 ft . ledge of Cohococheague Limestone is on the berm. The beds dip $70^{\circ} \mathrm{E}$ on the east. These beds are faulted against beds dipping $45^{\circ} \mathrm{E}$ on the west. The limestone is highly cleaved along the fault. A solution opening 2 ft . wide x 4 ft . high is on the east side of the ledge. Discontinuous outcrops extending upstream from the fault, dip 45° E.

```
Diagram- bluff with fault
```

Э"x "' $^{\prime \prime}$ original; $2^{\prime \prime} \times 2^{\prime \prime}$ reproduction
33.77460 .05 OUTCROP ON BERM A LOW bluff of Conoco-

Cheague massive limestone has small solution openings Limastons is mainly mesiur; strike of has $N 10^{\circ} E$; dip 42° 今, (downothan), 60 at lower end g antre.
dis.
filled with orange brown silt.
83.88459 .92 . Small bern and stout dod; aral states on berm, 108 . lory, of stroy wool (uncle:) on bum-
83.89459 .90 OUTCROP ON BERM Conococheague Limestone
is in a ledge 80 ft . high. The beds strike $\mathrm{N} 20^{\circ} \mathrm{E}$ and dip 46° to $70^{\circ} \mathrm{E}$ on the east side. An anticline is at the base of the west and of the ledge. The east limb dips $46^{\circ} \mathrm{E}$; the west limb dips 80°, A prominent crack, sloping to the west, cuts the center of the ledge. Sketched

DIAGRiff, structure in bluff- 5" x 10" original final $2^{\prime \prime} \times 4^{\prime \prime}$.
83.95 OLD QUARRY ON BERM The Conococheague Stree wall and foundation.
Limestone, with massive beds up to 10 ft . thick are on the west side of a ravine. They strike $: 25^{\circ} \mathrm{E}$ and dip $45^{\circ} \mathrm{E}$. A quarry is on the east side of the ravine with a 50 ft .
front along the canal. The quarry extends north 75 ft . The beds in the quarry dip 80° to $85^{\circ} \mathrm{E}$ at the top and are vertical at the base. $200 / \mathrm{l} \cdot \operatorname{long}, 50 / \overline{\mathrm{l}}$ cure (query); prominati nibs of clays calcic in downotham side of query
83.96

CULVERT 110 Henson Culnot

MP 84 459.76 Small outre of limestone on hum.
coping and semicircular arch are cut limestone. The arch has a 6 ft . span and a 3 ft . rise. 10 ringstones and a
large keystone, 14 inches wide at the base, 22 inches wide Same on berm.
at top, are in the face. ${ }^{\text {a }}$ The parapet and coping are 4 ft .
 high. The spandrels and parapet are rubble limestone. A

3 ft . dry wall is above the coping. The culvert is part-
ally closed by silt (1971).
84.21-84.40 459.62 DISCONTINUOUS OUTCROPS ON BERM

Conococheague Limestone, in beds 1 to 3 ft . thick are in
low bluffs. The beds strike $N 15^{\circ} \mathrm{E}$ and dip $47^{\circ} \mathrm{E}$. 459.55 (where roads come in.) Limestone and cattle ructsent wall on tongesth downerkam of want win
84.37 WASTE WEIR This is a concrete frame
with 3 gates for insert boards. The frames are broken out How wight valuers (1975)
wall ends ogpmike wow.
(1971). This is the site of an overfall constructed in
 t mosul on cast side braids ; open hiss. the dak Dee. 1921 m cnenck wi. arable, rubble 1835. Now hat no gets or bonds ; open hide. Has date of Dec. 1921 m cruck g $w . w$. Pours howe will ado gepoits wast weir.
34.40 D59,36 DAN NO. 4 The original dam was built

Concert font er and crank forty agilleny at upper end g poon house.
in 1832-34 but is now covered by the pool from the present
Prow hoes file of Rimed limutrus
Thesony ruatment wall - crenulated limestone rubble; 150 posting or downitium and of prow plant.
dam. It was a timber crib with stone fill and wooden sheathing, 810 ft . long, 52 ft . wide at top and 15 ft . high. The timber ties were bolted to bedrock. The front slope of old dam was $11 / 2$. to 1 and the back slope 2 to 1. The dam, stop gate and guard lock cost $\$ 79,095$. The guard bank enlarged from 39,103 cubic yards to 43,013 cubic yards in 1235. The abutment bank was breached in 1934,1836 , 1843, 1846 and 1847. The dam was breached in 1836 and 1840. A serious breach on May, 1846 carried away 80 ft . of the structure. The repairs were carried away in July and November, 1340. The dam, abutment bank, and guard bank were rebuilt extensively in 1847 to 1848 . The guard bank was breached $1836,1846,1847,1852$ and a large breach, 120 ft . long 1857 when the entire river passed through it. Another breach in the guard bank occurred in 1858.

A new gravity type masonry dam, directiy in front of the crib dam, was started in 185?. Stone for this dam was
from a quarry in the Concocheague Limestone, 400 ft , north of the dam. The Maryland abutment was finished in 1856 and later extended. A freshet in 1859 took out the abutment and masonry work on the Virginia (West Vireimia) side and opened a 100 ft . breach in the guard bank. In 1860 another freshet took out the repair work. The masonry dam was completed in 1866 and was 630 ft . long between abutments and 715 ft . in overall length. After powe \dot{r} plant installation in 1915 -ft was 810 ft. in overall length. The dam is 18 ft . wide at the base, 12 ft . wide at the top and 20 ft . high. The dam is built of limestone masonry rubble, grouted and faced with squared limestone blocks set in mortar. It cost $\$ 240,000$ in 1866. The pool impounded is 8 miles long. The iov. $24,1877 \mathrm{flood}$ caused 180 ft . of center of new dam to give way with the breach extending to the low water surface on the downstream side and 4 to 5 ft . below the crest on the upstream side. The guard and abut-

```
ment banks were also breached. A 175 ft. break occurred,on
the Virginia side of the dam in 1878 and was repairea in
1879 at a cost of $29,309. The 1889 flood caused a breach
in the guard bank and the abutment bank. A concrete core
was then placed in the abutment bank. The Maryland abut-
ment was rebuilt in 1892.
Water power rights at the dam were leased by the Martinsburg Power Company in 1906 and the power plant on the West Virginia side was placed in operation in 1915. It has two 500 KW generating units and is now operated by the Potomac Eidison Company ( ).
```

Foundation leakage through solution openings in the limestone foundation became serious in the 1920's with the worst leaks 50-75 ft. and 115 ft . from the Maryland abutments These were grouted with 100 tons of asphalt in 1930. In spite of the repairs, 75 ft . of the dam in the area of the leaks was carried away by floods and ice on February 29,

459,36. Dam no. 4 drop gate; uncut grams on south atuthuat above towpath; hayes ak 254 stye gate

```
and March 19, 1930. It was rebuilt by Trustees of the
C & O Canal Company for $ $33,292 with money advanced on the
annual rent by the Potomac Edison Company. Still later the
abutment bank washed out on May 13, 1937.
MP85-458.75.MP
```

 The abutment bank between the dam and the canal has a
 core wall (cutoff) of masonry and concrete placed in 1889
with an earth embankment over core. The abutments of the
stop gate at canal end of abutment bank are built of ham-
Bounce. 4 -
mer-dressed, finely rared limestone cut by small fractures.
Rope grooves cut the limestone. A machinery house was over
the stop gate but it was carried away in the flood of March
1936. It was rebuilt as a museum by the National Park ser-
vice and was carried away by the flood in Storm Agnes,
1972. An outcrop of gray Conococheague Limestone is
on tine berm side of the stop gate. The beds strikes $N 10^{\circ} \mathrm{E}$
and dip $35^{\circ} \mathrm{E}$. West of Dam no. 4 the canal is 10 ft . below
the pool of dam and is protected by a guard bank one mile

```
Ions, 17 ft. above the canal on the river side of the towt
ing path.
Plan Dam no. }4\mathrm{ to Guard Lock
Original 8"W}\times1\mp@subsup{0}{}{\prime\primeh}; final 4"W x 5"h.
84,73-TOThidy%
85,21-Clith on W,Va. side of PAtrmae.
85.21, Clift?"W.VG. Nide of PAmace.
85.44 TERRACE ON BEMM A broad bench slopes
```

upward from canal level and a second, gravel strewn ter-
race is on the top of the hill, 140 ft . above river level.
85.62 GUARD LOCK 410 ft . Aft, constructed

1833-34. It is faced with hammer-dressed Conococheague Limestone in blocks 2 ft . wide, 2 ft . thick and 2 to 5 ft . long. The wall at the head of the lock is 20 ft . high. where a bridge crosses it. There are slots for stop gate planks at the head of the lock. The lock gave access from the canal to the pool behind Dam no. 4. A piernead, constructed in 1834, formerly was on the upstream side of the lock. An embankment on the berm at the lower end of the lock is the remains of a crib for a lower extension. The
 15/4. from rood.

Mockhouse, constructed in 1837 , was on the berm 100 ft .' from the head of the lock but only the stone foundation remains.

25 f.t. north of the lock is a culvert under the towing path and guard bank which carries a feeder to the canal. The culvert has a semicircular arch with a span of 8 ft and a rise of 4 ft . There are 10 ringstones and a keystone in the face. These are cut limestone. The abutment is 1 ft . high and made of concrete. The parapet and coping are $11 / 2$ ft. high. The culvert was constructed in the $1870^{\circ} \mathrm{s}$. A concrete frame control gate is on the river side of the culvert.

There is no canal for 3.28 miles above Guard Lock 4 . The barges were towed in the pool. The towing path along the river bank was constructed $1833-34$ and $1830-38$. Except for

```
the first mile most of the towing path has been washed
away.
85.62-85.69 OUTCROP Limestone of the Rockdale
Run Formation is exposed in a bluff 60 ft. high east of
towing patn.
85.89-86.58 HIGH FLOOD PLAIN The broad, flat
(85.69-36.38)
area to east of the towing path is a flood plain that is
covered by the river occasionally.
35.95 (05.73) OUTCROP The limestone in the hill to the
east of the towing path is part of the Rockdale Run Form-
ation.
86.51 (86.40) OUTCROD A 5 ft. leãge of dark gray Stone-
henge Limestone, strikes N15 5 and dips 66%N%.
(80.01-30-80.58) OUTCROP A low cliff of Stonehenge Limestone
with beds 1 ft. thick to massive, strikes N20'E and dips
```


$70^{\circ} \mathrm{WNW}$.

$86.73(36.66)$ OUTCROP An 80 ft . bluff of Stonehenge
Limestone is along the towing path. Solution alcoves are developed in face of bluff. 80 ft . north along the outcrop is a ravine scoured to bedrock.
86.78 (86.72) OUTCROP A 20 ft . ledge on the towing path
is formed of dark sray Stonehenge Limestone. The rock is massive and has fine angular calcite veins. The limestone
weathers white.
$\left.\begin{array}{l}86.94 \\ 87.1\end{array}\right\}^{?}$? ind repained tringeth
86.30-87.65 GALLOWAY CLLrHS Cam orn sheted. 80 ft , high, (36.75-87.65)
are along the towing path. They are formed of dark gray

Stonehenge Limestone. The beds are contorted with an over-
all strike of $N 30^{\circ} E$ and dip of 60° SE. A small cave at
$86.80(86.75)$ is 20 ft . east of the canal. The entrance is

10 ft . above the level of the towing path and is 6 ft .
square. The cave extends8 ft. to a crawlway which trends 86.96 manony well on thoputh at nozhypintijutaingint pore.
south parallel to the towing path. A fault trending $N 30^{\circ} E$ crosses the towing path at a small ravine 100 ft . northeast of the cave. The cliffs to the north are massive, gray Conococheague Limestone with the beds striking $N 30^{\circ} E$ and dipping 60° Wi w at $86.85(36.80)$. A low ledge of Conococheague Limestone is on the towing path at 87.01. The limestone is dark gray on the west (riverside) amd buff colored on the east (landward side). The beds strike $N 30^{\circ} E$ and dip $60^{\circ}-70^{\circ}$ SE. Buff, fine grained limestone is exposed along the towing path to 87.41. Joints are in three planes with angles of 60° between the planes and vertical to the beds at 87.10 Ravines scoured to limestone bedrock are at 87.19 and 87.25. From 87.26 to 87.33 there are high bluffs of Conococheague Limestone. The limestone is massive with prominent calcite gashes. The beds strike $N 40^{\circ} E$ and are vertical. A V-shaped ravine cut to limestone bedrock is at 87.34. It has a channel 4 ft . deep developed along a joint
trending east and dipping $60^{\circ} \mathrm{N}$. Blurfs of conococheague
Limestone up to 80 ft . high are along the towing path from
87.35 to 87.65 . Calcite veins are numerous and some beds
are fractured. The beds strike $N 40^{\circ} \mathrm{E}$ and are vertical.
$87.68-88.04 \quad$ BREAK IN CLIFFS At the Run) north end of the break there are bluffs of Conococheague Limestone up to 100 ft. high. The limestone is light gray on weathered surfaces and dark gray, microcrystalline on fresi surfaces. Jalcite veins are common. The beds strike $N 10^{\circ} \mathrm{E}$ to $\mathrm{N} 20^{\circ}$ Э and dip 75° to 80° WNW. The fault cited at 86.80 recrosses the towing path at 87.75. On north side of the fault there is dark gray Stonehange Limestone with irregular slabby beds to massive. There is solution opening, 4 ft . wide, 8 ft . high, 6 ft . long at level of towing pati at 87.99. Jointing in the Stonehenge Limestone strikes $N 75^{\circ} \%$ and dips $58^{\circ} \mathrm{N}$; 2 E-K, dips $64^{\circ} \mathrm{S}$ at 88.01. Along the northern part of the cliffs, Stonehenge limestone strikes $N 20^{\circ} \mathrm{E}$ and dips $70^{\circ} \mathrm{SE}$

at north end.

88\% 12:- 446.57 MACKAHONS (Cedar Grove, Shanks, Avis, Shaffers, Galloway, Charles) Mill The mill was built in the early 1800° s. A steel wheel was installed shortly before the mill ceased operations in 1922. The machinery was dismantled and stored in the mill. The foundation of the mill is limestone and the superstructure is wooden. The inlet and dock at the mill are lined with limestone
88.12 - Boat basin 40 p . square, landing ramp. Masonry houstroce walls rubble. Conente slat hide own Drawing Rumen and tain cutcaves. 88.11-83.22 OUTCROP Ledges and bluffs of Stonehenge 446.57-446.66

Limestone are up to 100 ft . high. Thefimestone is thin bedGed, gray with siliceous beds, $1 / 8$ inch apart. These beds stand in relief on white and light gray weathered surfaces. Fractures are normal to the bedding, 1 to 6 inches apart. The strike of the beds is $N 10^{\circ} \mathrm{E}$ and the dip is $76^{\circ} \mathrm{E}$ increasing to vertical at the west end of the outcrop. Joints strike $1770^{\circ} \mathrm{W}$ and dip 70° SSW to vertical. Solution
openings are in the middle part of the outcrop.
88.22-88.24 OUTCROP Low ledges and bluffs along tow-
ing path. A fault cuts the rocks near the east end of the
exposure. The fault plane dips east and Stonehenge Lime-
stone on the east has been thrust westward over Rock daie
Run Formation on west. Bluffs of massive gray limestone,
dule
Hockle Run Formation, continue along the towins path on
the west side of a small ravire. Small, fine solution
lines are etched on the becioing planes at the level of
towing path. The limestone beds strike $N 30^{\circ} \mathrm{E}$ and dip
36° Niv decreasing westward to nearly horizontal.
Diagram of geologic section MacMahons :iill to Lock 41 Original 3 lines on $10^{\prime \prime} \times 14^{\prime \prime}$, reproduced at $3^{\prime \prime} h_{x} 4^{\prime \prime}$ W
446.80 Cleft 40 fir high >50 fi.long Extines th wetho ceys.
88.26446 .75 HOWELL CAVE The cave is a large alcovelike opening at the head of a ravine, 50 ft north of the river. It is the remains of a domepit 30 ft high and is the face of a bluff 60 ft . high. A gravel-strew crawlway
at the base of the cliff trends northwest and connects with single passage cave 1 to 10 ft . high. Small rooms are developed along the passage. A stream flows out the intrance in spring and early summer (Franz and Slifer 1971, p. 80-81). The cave is in a dark gray limestone, Rockdale Run Formation which is massive on fresh surfaces but on weathered faces beds are $1 / 2$ inch thick are discernible. Fractures striking $N 60^{\circ} \mathrm{N}$ and $\mathrm{N} 30^{\circ} \mathrm{E}$, vertical, are prominent on the northwest side of the alcove. Joints trend $N 50^{\circ}$, NB ${ }^{\circ} \mathrm{W}$, and NT-S; all are vertical.
88.26-83.40 OUTCROF Thick-bedded, dark gray to black dense limestone, Rock dale Run Formation is exposed along the towing path. On weathered surfaces the limestone is blue-grey. Beds are $1 / 2$ to of ft. thick and the becining planes are wavy. Subaneular breccia and contorted layers are indicative of slump in many beds.) A dense net of calcite veins, $1 / 32$ inch wide, is present locally. Strike

```
of the beds is N10' to N30}\mp@subsup{}{}{\circ}\textrm{E}\mathrm{ and the dip is nearly horiz-
ontal except for small flexures with dips up to 120}E. Th
dip at the west end of the outcrop is 240}\mathrm{ E. Prominent
vertical joints strike N80㐌N and N30'E.
447,00 cliff to wethis edge 40 fr . hagh \(\times 40 \mathrm{fr}\). hang.
88.40 LITTLE HOWELL CAVE This cave is an over-
hang, 30 ft . deep, 80 ft . high and 80 ft . long, in limestone of the Riackdale Run Formation. The cave opening is 10 ft . high x 3 ft . wide at the east end where it is 20 ft .
``` above the towing path. A gravel-floored crawlway and fissure extnd about 20 ft . NE from the entrance (Franz and Slifer, 1971, p. 80):
88.40-93.66 OUTCROP Dark gray limestone, Rockdale Run Formation is in ledges along the towing path. The weathered surface of the limestone is dark blue. Beds are over 10 ft . thick and some strata are distinctly cross-bedded. The strike of the beds is \(\mathrm{N} 30^{\circ} \mathrm{E}\); dip is \(30^{\circ}\) to \(52^{\circ}\) SE.

rebuilt 1369. This lock was originally planned as a compo-
site lock in 1832 but was constructed of hammer-dressed
wavy banded limestone. The limestone blocks are mainly
irregularly bedded and knobbly. Some of the biocks are
massive. The wall on the river:sice of the chamber is
concrete. The pile of limestone blocks on the southwest
side of the lock were removed from the lock chamber at the

\section*{Concrite in mases in ugpen herm.}
time the concrete was placed. Revetment of limestone
rubble is on the north side of the lock. Lock 41 which
connected the canal to the west with the pool behind Dam
no. 4 was originally planned to be built about 4 miles west
near the present site of Lock 43. The upper part of the
lock is partially buried in silt irom floods. Limestone
of the Rockdale Run Formation is exposed at lock. The
beds strike \(1 T 30^{\circ}\) E and dip \(72^{\circ} \mathrm{SE}\).

 29.00 447.55 Lock 42 g ft. Iift, constructed 1833-35,
rebuilt 1861. The river side of the chamber is dark gray,

```

    finely crystalline limestone. Some blocks in the chamber,
        have wavy banding. The ierm wall of the chamcer is concrete?
        A pile of blocks removed from the chamber is on the river
        side of the towing path. A crossover bridje for the towins
        path is at the lover end of the lock. Lockhouse no. 33, was
        formerly on berm but only the brick foundation remains. Nofmme
        89.00-90.40 447.62 MP89 In 1833-34 two sections of canal,
        section 167-168, were constructed too close to river in
        this stretch and were insecure. These sections were recon-
        structed in }1835\mathrm{ with the towing path inside the line of
        the old berm.
        89.21 447.69 CUTYF? 1131/2 constructed 1334-35.
        The aro.2 is hammer-dressed limestone with a 4 fi. span and
        lurys at Ruglt angh t culoni face; 15 ft, enatsakment abon coping.
    a 2 ft. rise. }3\mathrm{ ringstones and a keystone are in the arch.
    Tine abutment is 4 ft. nign and the perapet and copinco are 2
    2:U. high. All are coursed limestone mujole. Samem huw.
    ```
89.25-90.00 TARACh 0. B3nM A high flood plainadjacent to the canal grades to terraces inland. The first
; terrace is at the fence and the tree line on the spurs of
hilis. The second is at the top of hills. Numerous cobbles
; of sandstone in sandy silt soil cover the terraces. Lime.
 stone ledges are on the sours of the hills in form of large
9 humps at 89.60. Iimestone cliffs (Rockdale Run Formation)
:c-
 are on the west Virsinia side of the river at whitings Neck.
\(\therefore \quad 447.72\) - Two sgrings on river side of tompath; \(300 \mathrm{~cm} .17 . / \mathrm{sec}\).
 89.63 447,80-Begin Otllingns wedewnter

- West Virsinia shore. This is the site of Foremans Ferry.

\title{
90.90449 .45 CUTCROP 0.: BERM A ledze of Conococheague \\ at briming of anert. Ahithed 90:98-91.03
}
Immestone is in front of the cottane on the berm. The beds
strike \(140^{\circ} \mathrm{E}\) and are veriical. 50 fit. West the beds are 1

along a fault. A leage of Sionenenge Limestone is best of
fault and near the west end of the exposure with beds:
\(\leftarrow\)
з
```

striking N20*\Xi and dipping 75'MrN.
448,75 end of Drliinges wide water.

```

Diagram of structure Original \(4^{\prime \prime} h \times 8^{\prime \prime} w\). final \(2^{\prime \prime h} \times 4^{\prime \prime} \%\). 448.91-449.00 Cliff on W.Va. aide of non. 90.96 OUTCROP ON BERM A ledge of stonehenge Limestone, with beds up to 4 ft . thick is on the berm. The strike of beds is \(370^{\circ} E\) and the dip is 40 to \(57^{\circ} \mathrm{SE}\).
```

91.00 MPQ1 449,58 OUTCROP ON 3ER:M
cliff 40ft high
A is formed of

```
massive Stonehenge Limestone with beds striking \(140^{\circ}\) and

91.00 - Sike of Zoumanis Ferny .
91.03 OUPCROP ON BIRM A ledge contains massive

Stonehenge Limestone.
91.09-91.13 OURCSOP ON 3ERU A Cliff, 50 ft. high, is
formed of thick bedded to massive limestone of the Rockdale

Run Formation. The strike of beds is \(N 40^{\circ} \mathrm{E}\) and the dip is
\(26^{\circ} \mathrm{NW}\). Near the north end of the cliff the beds are nearly
horizontal and contain solution tubes, 1 to 2 ft. in dian-
 meter, filled with orange brown clayey silt.
 91.23 OUTCROP ON BERM A Cliff, 50 ft. high, is
 formed of limestone of the Rockdale Fun Formation. It is
 \(5^{-}\)thick bedded to massive and the beds strike \(N 40^{\circ} E\) and dip
 \(50^{\circ}\) NW. Outcrop ends 449.90
 91.33-91.36 OUTCROP ON EESH Limestone of the Rock-
 :0- dale Fun Formation forms ledges. The beds are 2 to 4 ft .
\(::\)
 thick except at the upstream end of exposure where they
 are massive. They strike \(140^{\circ}\) 玉 and dip \(50^{\circ} \mathrm{No}\).
 91.66 450.10 CULVERT 119 Constructed 1835. The semi-
 \(21 / 2 \mathrm{ft}\). rise. 8 ringtones and a keystone are in the
 face of the arch. The parapet is i fie. hisin. wingsatriguanghtoface.

 FI wang + parapet falcon
91. \(60450.10-150.30\) OUTCROP ON BEFM At the power line crossing
skerries to 92,55
there is a cliff 40 ft. high formed of limestone of the
Rockdale Run Formation. The beds are 1 to 4 ft. thick and
Dip \(20^{\circ}\) down stream on east; \(30^{\circ}\) dis. on west; \(2-4 \rho\). Lemestime beds. strike at right angl

solution cave just math of center of actrupp.
```

    strike \frac{M10%}{340%*}}\mathrm{ and dip 180N at base of cliff. The strike is
    N20}\mp@subsup{}{}{\circ}E\mathrm{ , dip }1\mp@subsup{5}{}{\circ}\mathrm{ WNW in upeer part of cliff. A high flood
    plain and terrace are on top of the hill on the west Virgin-
    s-ia side of the river.
    Diagram of structure. Original 4"h x 8"w, final 2"h x 4"w.
    ~
    91.78 OUTCROP ON BERM: \assive limestone with beds
    over }10\textrm{ft.}\mathrm{ thick, Rockcale Sun Formation, form ledses. The
    .

```

```

91.87 OUTCROP ON BERM Ledges of limestone, Rock-
dale Run Formation are on the berm. The beds are 1/2 to 3
f%. thick and strike N10}\mp@subsup{0}{}{\circ}\mathrm{ , and dio }3\mp@subsup{5}{}{\circ}\textrm{W}\mathrm{ . A solution tube,
3 ft. in diameter, is 30 ft. above level of towing pat'n in
the ledges.
MP92 450.38
92.00 450.38 OUTCROP ON BEN: A bluff is formed of
C'namorsburg Limestone. The beds are 2 inches to a foot
thick and strike N30%%,dip 550%E.

```
92.05450 .38 OUTCROP ON BERM Chambersburg Limestone.
at the south end of a bluff. A cave entrance, 10 ft . wide \(x 6 \mathrm{ft}\). high, is in the bıufi. The cave pinches down to 2 small solution tubes 6 ft . from the entrance. A spring issues from a solution tube, 2 ft . in diameter, at canal level, 50 fit. north of cave. Strike of beds \(320^{\circ}\), dip \(54^{\circ}\) upseman. 92.14 OUTCROF ON BERM Bluffs 50 ft . high, cut by a ravine, are formed by Chambersburg Limestone. The beds are 1 inch to 1 ft . thick and hackly. The strike of the beds at the ravine is arcuate trending \(140^{\circ} \mathrm{W}\) with a dip of \(45^{\circ} \mathrm{NE}\) at the south. The strike is \(N 10^{\circ} \mathrm{E}\), dip \(80^{\circ} \mathrm{E}\) at the north. The entrance to Dellingers Cave is at the top of bluff on the side of the ravine. The entrance is small hole opening into a room 35 ft . long, \(1 y \mathrm{It}\). wide. A passage from the room trends southwest for 160 ft . Where It pinches out (Davies, 1961 p; 41-42; Franz and Slifer 1971, p. 76-77). High flood plain thrawn in W. Va.
92.23 proposed six of Dram no, 4 in 1824 ...
92.42-92.55-450.76¥ OUTCROPS ON BERM Ledges 30 to 50 ft .
high are formed of Chambersburg Limestone. The beds strike \(\mathrm{N} 20^{\circ} \mathrm{E}\) and \(\operatorname{dip} 30^{\circ}\) ESE at south end of exposures; the dip is \(45^{\circ}\) ESE at 92.48. A ravine scoured to limestone bedrock is at 92.46. A fault cuts the limestone at 92.48 with beds of shiny, dense gray limestone on the downstream side of the fault. The strike of these beds is \(N-S\) and the dip is \(80^{\circ} \mathrm{E}\) to vertical. Dull black, dense, calcite-veined limestone is on the upstream side of the fault where the strike is \(N 10^{\circ} \mathrm{W}\) and the dip is \(45^{\circ} \mathrm{E}\). The fault trends \(\mathrm{N} 55^{\circ} \mathrm{E}\), dips \(45^{\circ} \mathrm{NW}\). A breccia zone, 1 to 2 ft . wide, is on the upstream side of the fault. Drag fold on the downstream side of the fault indicates the downstream block moved upwards relative to the upstream block. A revetment of limestone rubble is along the river side of the towing path. 92.5. pping from fixe in rock.

\footnotetext{
45.0.85 - limestrue uertmat on mimide of thopath; \(60^{\circ}\) slant; Gerks up to 2 in . thied \(\times 4 \mathrm{fr}\). bry \(\times 2 \mathrm{fr}\) wids - to 450.90 .
}
92.59-92.63 OUTCROP ON BERM Chambersburg Lime-
stone crops out in low ledges with beds 1 to over 10 ft . thick. The beds strike \(N 10^{\circ} \mathrm{I}\) and dip \(70^{\circ} \mathrm{W}\). A ravine cut to limestone bedrock is at the south end of the exposure.

A spring with a concrete basin is on the berm of the canal 100 ft . north of the outcrop 2 im . pipe at to of tain \(=450.95\).
149.98 smooth freed leap y fimestme, 70 ph high, \(n\) hum. OUTCROP ON BERM A low ledge of Chambers-
burg Limestone is 100 ft . east of the canal berm. all along the tref and therein a pred nurtment at the to of the trowpeth to 450.00 92.76 45\% WASTE WEIR This is a concrete frame structure hopaddes
with 3 gates and insert boards. Commence wing 20/4. long at net angle canal on ruisside g trogeth.
92.97 451.31 LOCK 43 ft. lift, constructed 1833-34.

The facing is hammer-dressed limestone. The limestone
blocks have clay seams 2 to 4 inches apart and prominent Concur pete on kaon coping.
calcite veins. Canal company records indicate that lock 43
was extended downstream to form a double lock in 1881. No
evidence of such an extension remains. The lockhouse is on
Flume on berm, Loft. Sony, pique our to adorer.

 45 in. dep.

the berm and is whitewashed brick on a limestone rubble 40 ft . from lock
foundation. It was constructed in 1836. An embankment on
the berm extends upstream from the lock. Lock 43 is at Bum sid, milder of lat, the lower end of the. Four-mile Level. \(6 / \mathrm{p} \cdot \mathrm{uy}\), from flor; unit of stop pant inoctt offering 14 im .urde \(\times 10 \mathrm{im}\). dup bock nome \(x 2 \mathrm{in}\).
 \(93.00 \mathrm{MP93} 451.36\) CULVERT 120 Constructed 1833, lengthened 1834. The arch face is cut limestone. The span is 8 ft . with a 4 ft . rise. 10 ringstones and a keystone are in the and coping, 2 ft . high, are coursed limestone rubble. A Downath face pushury ow t; slump in embankment aton.
12 ft . embankment is above the coping.
93.58 451.95 CULVERT 121 Constructed 1833-34. The semi-
circular arch is cut limestone and has a span of 6 ft . and
```

a rise of 3 ft. }10\mathrm{ ringstones and a large keystone are in

```
the face of the arch. The springing line is at water level. The parapet and coping are \(31 / 2 \mathrm{ft}\). high. Wings, spandrels and parapet are coursed limestone rubble. Wings at right angle to cubit face, sech \(5 / \mathrm{f}\). long ontrugath ide, no wings on hem. 12 ft . Embankment above caging. Sink \(10 / 4\). lory \(\times 5 / 4\). nd in prism.
\(93.80^{452.25}\) A prominent bluff of Chambersburg Limestone on the west Virginia side of the river. The beds strike \(N 10^{\circ}\) W and dip \(45^{\circ} \mathrm{E}\).
93.9 Potomac Frise + Game Club. Rose d curses canal at 452.25
94.44 452.85 FALLING WATERS BRIDGE Constructed 1833-34.

All that remains are the abutments built of hammer dressed, dark gray to black, dense limestone. The blocks in the abutment are up to 4 ft . long and 3 ft . high. The abutment is 13 ft . high above the towing path and 18 ft . high above the canal on the berm. The original bridge was a timber, lattice truss. The superstructure was replaced with a timber, Warren truss and the berm abutment rebuilt in 1809.

The superstructure was rebuilt in 1886 and the bridge was carried off in the flood of 1936. Some of Lee's Confederate

Army crossed here on its retreat from Gettysburg, July 14 , 18 ó3.

94.92

OUTCROP ON BERM Gray
Chambersburg Lime-
stone in beds 1 ft . thick forms low ledges. The strike is \(\mathrm{N} 37^{\circ} \mathrm{E}\) and the dip is \(35^{\circ} \mathrm{NW}\).
94.98 OUTCROP ON BERM A low, densely veget-
ated bluff is formed of Chambersburg Limestone.
\(\begin{array}{ll}\text { MPG } & 453.41\end{array}\)
\(1211 / 2\) ?
95.05 453.48 CULVER 122 Constructed 1833-34. The semicircular arch of cut limestone has a span of \(6^{\prime} \mathrm{ft}\). and ?
a rise of 3 ft . There are 10 ringtones and a keystone in
the face of the arch. The springing line is at water level. ho wings on ham. \(6 \longdiv { 6 }\) F lard wage, siopiene on tree putt
Parapet and coping are. 3 ft . high. The wings, spandrels \(10 / *\) embankment aton coping.
and parapet are coursed limestone rubble. Sink, sinf.diam in
95.20453 .65 - Cumberland Valley H.B.O.

above canal is formed of nartinsburg shale. At the base of and ed.
the bluff is an outcrop of black, thin bedded, slabby,
highly cleaved shale in beds 2 ft . thick. The strike is
N \(40^{\circ} \mathrm{E}\) and the dip is \(75^{\circ}\) SE.
\(95.54-95.68\)
OUTCROP ON BTRM Extensive exposures
of Martinsourg shale are in low bluffs. The shale is black, thin-bedded, platy, with some beds up to a foot thick. The strike is \(N 35^{\circ} \mathrm{E}\) and the dip \(50^{\circ}\) NW. Cleavage strikes \(N 40^{\circ} \mathrm{E}\) and dips \(85^{\circ} \mathrm{SE}\) to vertical. At 95.57 the strike of the beds is \(2740^{\circ} \mathrm{E}\), with the dip vertical. At 95.59 there is a false syncline formed by sinuous fractures that give the appearance of a folded bedding plane. At 95.68 there is a small exposure of shale on ths upstream side of a ravine; strike is \(N 35^{\circ} \mathrm{E}\) and dip \(40^{\circ} \mathrm{NW}\). There are occasional outcrops to 95.88.

95,70
End of
sherish.

MP61 454.55
plain is at canal level on the river side for a mile up \(\rightarrow\)
stream.
\(96,1(96,23)\) hrduvater, \(125 \mathrm{fk} . \times 206 \mathrm{ft}\). long east of culet 124. Cliff along sad t vide I wrdwath. Indewotr ends at cu burt 124. Inundation of action
96.24 (96.07)454.65 CULVERT 124 \({ }^{123 .}\) Constructed 1833-34. The semicircular arch is cut limestone with a \(8^{6} \mathrm{ft}\). span and a

3 tskeubacks
\(21+2\) ft. rise. \(\$\) ringstones, and a keystone are in the

Rock sentiment from culunt
face of the arch. The springing line is at the foundation.

The parapet and coping are \(11 / 2 \mathrm{ft}\). high. The spandrels
and parapet are coursed limestone rubble. The center part Upotham wing fallen No wings Bumfuac collepaed; crlleape g prism of the arch under the bed of the canal has collapsed (1071).
 96,4 forthideg an canal \(=\) accuse.
 \(90.72(90.52) 45513\) CULVERT 125 COnstricted 1833. The and amman
semicircular arch is cut limestone with a 4 ft . span and a
\(\checkmark\) same on tum.
2 ft . rise. 8 ringstones and a keystone are in the face of
the arch. The abutment is \(6 \mathrm{f}^{\prime}\). high. The parapet and ho wings
oping are 2 ft . high. The spandrels and parapet are
coursed limestone rubble. \(8 / 8\). Emfoubenst abr coping. outcrop at bum face in strum valley.
96.80 (96.59) V-shaped barrage in river. This is
```

possibly the remnant of an old sluice structure used in
fishing or navigation.

```
 125:
96.91 (96.66) CULVERT 126 Constructed 1833. The
semicircular arch is cut limestone with a span of \(4^{6} \mathrm{ft}\)., and a rise of \({ }^{3} \mathrm{ft}\). \(\neq 0\) ringstones and a keystone are in the barrel partly silted up.
face of the archon The abutment is \(X \mathrm{ft}\). high and is
coursed limestone rubble. The culvert was undermined and Towing? same on berm. Ho colleges. Parapet I tier, coping 1 tors : 2 tin all Washed Patuinthingettember, 1927. Rubble from the culvert now Revetment wall at top of towpath, \(2^{\prime}-4^{\prime}\), extends forms a bar in the river. Wist to Chit 125. No collapse mpicinn author in stream on turn. \(97.02(96.77) 455.45\) CULVERT 126? The arch was semicircular with a \(\not \underset{\phi}{4} \mathrm{ft} . \operatorname{span}\) and a \(\not \vec{p} \mathrm{ft}\). 4 arch atoms incl. Akurback + hiyotrm binge on upatham side, harm \(\frac{6^{\prime}}{}\)
rise, The abutment was 3 ft . high. The culvert is all tut turn colleyreed and carriers off; completely washed out (1971). outre an hum in creek \(97.03(96.78) 455.50\) OUTCROF ON BERM LOW ledge is formed of limestone of the Rockdale Run Formation. The strike is \(\mathrm{N} 32^{\circ} \mathrm{E}\) and the dip is \(70^{\circ} \mathrm{SE}\).

\section*{MP 97 455.69}
\(97.49-(97.25)\) POWEITS BEND PIers of the o Id cumberland
455.92
Valley Railroad bridge are in the river. The abutment of the bridge on the berm is built of limestone blocks. The pier on the side of the towing path has 4 tiers of wavy-
banded limestone with 13 tiers of Seneca red sandstone
above the limestone. The 5 piers in the river are limestone \(15^{\prime} \mathrm{kn}\), 4 inge, \(25^{\circ} \mathrm{hign}\) of obighly curved arming on downstream
blocks capped by concrete. The original timber truss bridge
was built in 1871-72 by the Keystone Bridge Company for the

Franklin Railroad and it was 840 ft . long. It was opened,

October 1, 1872 and 5 spans carried away in flood of Nov-
ember 25, 1877. One other span was damaged in the flood.

The piers were raised and \(27 n\) iron superstructure with

Pratt deck trusses was completed by the Delaware Bridge Company on March 20,1878 at a cost of \(\$ 42,897.55\). The flood of June 1,1889 swept 6 spans away. In rebuilding the piers were raised again and a new steel superstructure of Warren through trusses was erected by the Union Bridge
Sips, 2 pl . diam e inks canal though wall on downstream side of abutment; 20 g .
dounstham from abutment. Cuntsund = curd wring on north.
Company of New York. This bridge was 862 ft . long with 7
spans each 50 ft . above low water. It cost \(\$ 72,131.40\) inc-
lading \(\$ 13,414\) for the raising piers. Some of the old
bridge was salvaged and used in an iron bridge, 149 ft .
long, at Martinsburg, W. Va. The piers repaired again in
 Wall ends at jinn.
1904. In 1913, after completion of a new bridge upstream,
this bridge was cut up and dropped into river for salvage
(Cumberland valley R , Annual Reports,
and
Engineering Record). There was a small basin with a
cock on the berm between this bridge and the present bridge
to the west. It was built in 1870 by the Franklin RP to
transfer coal from the canal. 2 tracks were on the berm
side of the basin, one for railroad cars, the other for a
loading crane. A switchback to south provided connection
from the main line of the railroad to the wharf.
 Wall 100 pacers lang th pies, coursed and triournd limetrue suttees.

 freudation on scale.
97.58 (97.35) POWELLS BEND penn ventral Railroad bridge
no. 82/13. This bridge was fabricated by the Pennsylvania
97. \(58 \quad 456.60\)

Steel Company in 1914 and constructed in 1913 to 1516. It
has deck, plate girder spans, each 100 ft . long with 2
concrete deck. The 12 concrete piers are each 13 ft . wide
with the neat work 11 ft . wide tapering to 6 ft . at the
top. The piers are \(561 / 2 \mathrm{ft}\). nigh.
97.59 Narrow entrance through berm dike to basin, \(200^{\prime} \mathrm{long}\), \(* 175^{\prime}\) wide
\(97.88(97.55) 456.40\) SULERT 127 NILLIAMS CULVERT con-
structed 1833-34. The semicircular arch is cut limestone
(on berm) and has a span of 6 ft and a rise of 3 ft . The Culvert had no wings
abutment is 5 ft. high. This culvert was breached on

April 21,1863 and a crib 142 ft . long was placed in it.

The culvert was rebuilt in the Fa??. of 1863. It was ides-
troyes in a flood in August 1926. Only the limestone
rabble of the inner arch and the berm facing remain (1971). Tow park washed out, embankment gone. Out crop at base of townaikh. + for .
MP 98 : 45.6 .65
456.89- 6tiers of slope stone work \(6^{\prime}\) wide \(\times 6^{\prime} h i g h ;\) lays of fen g with \(2^{\prime} \times 6^{\prime \prime} \times 2 \%\) see, collapsed cubant. are
\(98.63(93.45) 457.10\) INTERSTATE HIGHWAY 81 BRIDGE IWO
parallel continuous, deck, plate girder bridges were built.
estrus fallen - lenvestroc; simile tructhont.

1965-67 to carry I81 over the Potomac. The cut for the
 \(98.38 \pm\) Cubit +0.5 from Cubs. 127
98.44 Inench drain culet davis aging under cancel; drain of fitted etas.
abutment is in a 75 ft . bluff of Stonehenge Limestone. The
limestone is dark gray, finely banded, dense to finely crystalline and weathers white. The strike of the beds is \(\mathbb{R}^{\prime} 40^{\circ} \mathrm{E}\) and the dip is \(60^{\circ}\) SE.
Revetment walls on towpath 18 to 457.25
\(9{ }^{8} .92(93.74)^{457.38} \stackrel{\text { WASTE WEIR }}{=}\) This is a concrete frame
structure with 3 gates with insert for boards.
no paddles - Concuss congo at ugh angles to agulleway.
457.42 to colet 128 Kure is a pilch of inters \(16-12 \mathrm{fr}\). high allemande
99. 12 (98.98\()_{1}^{457.42}\) CULVERT 128 Constructed 1333-34. The
semicircular arch has a span of \(\nless \frac{4}{\mathrm{ft}}\). and a rise of \({ }^{2} \mathrm{ft}\).

The culvert is filled to the level of the coping. A sewer-
age plant is on the river side of the towing path west of no wings.
the culvert at MP \(99 \quad 457.65\)
99.16 old quarry on bum
99.25 (90.10) \({ }_{\wedge}^{457.77}\) LOCK 44 ft. lift, constructed 1832-34.

The facing is white and gray limestone blocks. lave, clayey
bedding planes are on the gray limestone. The white lime-
stone has smooth faces. Many of the blocks have shallow
lifting holes. The embankment in the canalubed at the
7oothidge own hos

lower end of the lock may be the remnant of cribs for a

Car odometer 93853 lower extension under constructed in 1881. However, records
of the Canal Company indicate that Lock 43 had an extension and that the extension for Lock 44 was not completed. A
tumble flume with no weir or overfall is on the berm. A flume 6-15ft aude: boat upain, 20fy. from lock. Gland mop around wing on upper bum; sight angle wigs at lower sud.
snubbing post is near the uppergate. The wall of the
chamber was throw in by Confederate troops on April 4,
1863. It was rebuilt later. The locknouse is on the tow-
ing path and is a 2-story clapboard structure with a cellar.
457.82
99.35 (99.20) PONE R PLANT Sin is plant of the Potomac R. Paul Smith plant.

Edison Company was built 1922-23. A low dam across the

Potomac River impounds water for cooling.
457.82
99.44 (99.32) WHARF The limestone wall on the berm side Stuffy - Find lay \(C_{021} c_{c}\). drain unto cancel fro hat anat ind of lo all. of the canal formerly was the front of a wharf on which
there was a transfer crane for unloading barges. This is - warehouse - on east side of street on berm
also the site of Derby Hill, which was destroyed by fire in Lykens Valley Coz l. Wagon shad on berm e wurst of atheist.
\(\begin{array}{ll}\text { 9.21.75 } & \text { Falls Church - begin } \\ & \text { shapherdstown } \\ & \text { licking Creek } \\ & \text { Falls Church - and }\end{array}\)
\begin{tabular}{lll}
94,634 ((Bard) & \(7647(\mathrm{VW})\) \\
94,697 & 7,730 \\
& \\
94,774 & 7,827
\end{tabular}
1920.
\(99.64(99.48)\) 458.10 \({ }^{\text {BRIDGE This bridge carries the road across }} \begin{aligned} & \text { Cumitury sad of hedge. }\end{aligned}\) the canal to Riverside Park. The original timber truss was constructed in 1833-34. The abutments are rough dress limestone pier setts of granite. The bridge was destroyed
in the Civil war and the timber truss was rebuilt in 1866. 56 ft . long, abutment on tropeath 29 ft . wide; pier on tum \(30 \mathrm{f} \cdot\). wide

The present iron 亡 russ was built by Mendel Dolman Bridge
99.68458 .15

Co., Baltimore, in 1879. The railroad lift span across the 80 Lift span \(40 / f\). lang, abutments \(20 \mathrm{ft} \cdot \operatorname{lomg}\) (wide) canal, \(150 f t\). to the west, was built in 1923. Martinsburge
shale is exposed on the berm along the railroad siding.

The shale is tieck, crumbly, and weathers brown. The
strike of beds is \(N 40^{\circ}\) E and the dip is \(38^{\circ}\) N.
End 8/16/75; begin 9/21/75. 474.06 at RR lift Bridge
99.66 (99.50) HIGTWAY BRIDGE, U.S. 11 This bridge was
constructed in 1908-09 by the washington and Berkeley Bridge

Company. It was fabricated by the Pennsylvania Steel Comppins 30 wide
any.and opened August 10 , 1909. It consists of 15 spans, incl larncund.

\footnotetext{
each 100 ft. long and 2 spans each 90 ft. long. All are through plate girders, 42 ft above river. The bridge is 1680 ft . long. Dec. 6, 1908 during construction, at about \(9 \mathrm{~A} \hat{\mathrm{~A}}^{4}\), the top of pier 11 under traveller, gave way and carried 14 men and the traveller into river. 8 men were killed. The concrete piers were recapped 1932 and the bridge was purchased by the Maryland State Roads Commission on December 31, 1953 for \(\$ 900,000\). A ferry and ford were at the site since 1744 and were known as watkins, Lights, Lemons, and Ordingers Ferry. she town of williamsport was founded in 1786 by ci. williams.
}
99.73 (99.59) WILLIAMSPORT (CUSHWA) 3ASI: constructed
 1835-38. The basin is triangular in plan with the apex to the north and is faced with limestone revetment. Coal was
formerly transhipped to the Jester maryland Railroad at
this point. The railroad was opened from Baltimore to

Williamsport on November 27, 1373.
Cushat tilling 100 fv ling \(\times 30 \mathrm{fr}\). wide on canal, 80 ft from canal at wot ind of office canal is 120 gh . wade??

\(99.80474,42\) CONOCOCHEAGUE (NO. 5) AQUEDUCT Constructed Flit kugurs house artowpeth jint ust ofaqualuct (mot anen 9.21.75) 1832-34, cost \(\$ 66,759.79\). The aqueduct has 3 segmental arches, each 60 ft . long with 15 ft . rises. There are 56 ringstones and a keystone in each arch. The overall length between abutments is 196 ft . and 254 between the ends of the wings. Ringstones and skewbacks are cut limestone with some concrete repairs to the ringstones near the skewbacks on the towing path side. The east arch on the berm is half concrete and the rest of the face of this arch has fallen. The coping and parapet are 7 fi. high on towing path side with the coping 30 ft. above the stream and 33 ft . above foundations of the piers. The parapet is \(51 / 2 \mathrm{ft}\). wide at the top, ? ft. wide at the bottom on the towing path side. The berm parapet was formerly \(41 / 2 \mathrm{ft}\). wide at the top and 5 ít. wide at bottom. The piers are 16 ft . thick with pilasters (Mascanian orcer) on the face of the piers, abutments and ends of wings. The abutments, faces wings fearnd \(25 / \mathrm{V} \cdot\) long on tow peth, \(15 / \mathrm{A}\) on thm

\(11 / 2\) inch on a side, 4 ft. \(31 / 2\) inches hish, and the balusters are 1 inch rounds. Spiral side braces support
the railins. The aqueduct leaked seriousiy after \(18 \leq 1\) and the confererate troops tore down 74 ft . of the aqueduct to canal level on August 4, 1863. All of the scping was thrown down and there was a 6 to. 10 ft . opening for the width of the aqueduct in one arch. This damage was repaired in 1863. The top work was torn off again on July 18, 1864. The damaged areas of 1863 and 1804 are noticeable because they now contain æreas of undersized stones, especially at the west end on the towing path side. The berm side, except for the ends of the parapet fell on March 5, 1865. The breach
was 115 ft . long and the shattered area 155 ft . long. Spandrels over the center arch also fell. A wooden trunk was put in the aqueduct and stonework was rebuilt 1869-71. The masonry wall on the lower end of theberm side fell March 9, 1887 and rebuilt. on . , 1920 the berm parapet collapsed again carrying a barge, mules and crew into the creek. A wooden trunk was placed in the aqueduct with base beams of 8 inch timbers in concrete spaced 4 ft . apart. 12 ft. vertical beams formed the side with slanting external
timber braces. The aqueduct was the scene of riots in 1834
when several hundred Irish construction workers engaged in

a fight and Federal troods were brought in to restore order.

MP 100 - 474,80
100. 33 474.86 CULVERT 129 Constructed 1833-34. The semi
circular arch is cut limestone with a \(6 \mathrm{ft} . \operatorname{span}\) and a 3 ft .
rise. On the face of the arch are 10 ringstones and a key-
stone Abutments are 2 ft . high and the coping is at the
top of the arch. There is a 20 ft . embankment above the
 thecen mum ice monot me
1.

1834- Gan 20- Ruts abror montac of Guguan 400 siotrs, punupelly dicesuyee man 2 companics g meletha from thaguetonn 35 joild Enen nyyured
\(\checkmark 1835\) - Contracts purhihit lifuor on suctions.
\begin{tabular}{|c|c|c|}
\hline 1 & coping. on biltiangent - Cher Spring Road = Aragital Will = Cholera Cumetry. & \multirow{4}{*}{Entombunat on tumform Crovertange cul \(a_{5}\). to Cubut 131.} \\
\hline 2 & 100.69 475.88 CULVERT 131 Constructed 1833-34. The semi- & \\
\hline 3
4 & circular arch is cut limestone with a \(\not \subset \mathrm{ft} . \operatorname{span}\) and a \(\frac{2}{D}\) & \\
\hline \(5-\) & ft. rise. 16 ringstones and a keystone are in the face of & \\
\hline 6 & the arch. The parapet and coping are \(4^{2} \mathrm{ft}\). high. Abut- & \\
\hline 8 & ments are 2 ft . high. A 20 ft . embankment is above the & \\
\hline 9 & coping. Arsaight arngo; tace ste. erllapeed on hem. & \\
\hline & MP101 475.75 & \\
\hline 11 & 101.00 47568 (E. \(\operatorname{cnd}\)) HAGERSTOWN RESERVOIR The high embankment to & \\
\hline 12
13 & & \\
\hline 13 & the north contains the reservoir. Water is pumped from & \[
1+x
\] \\
\hline 15- & the Potomac River. The structure was constructed in 1925 & 2 apans, Kimber \\
\hline 16 & with later enlargements. Parking, picnicicher & \\
\hline 17 & & crocerte \\
\hline 18 & 101.04 475. 85 CULVERm 135 Original construction 1833-34. at wist ind g pronic alea. & styp \\
\hline 19 & \begin{tabular}{l}
18 in. \\
The culvert is now a concrete pipe, 2 ft . in diameter with
\end{tabular} & \\
\hline 21 & an overflow standpipe on the berm. & \\
\hline 22 & \begin{tabular}{l}
101,28 475.95 Goreangy.HBO 476.22 -say softhy vstephead tolly trum; \\

\end{tabular} & Jue others \\
\hline 23 & 102.00476 .70 CULVERT 134 Constructed 1833-34. The & \\
\hline 24 & circular arch is cut limestone with a 6 ft . span and a 3 & \\
\hline & \(200 / 1\). aloy ened. \(=\) old cuburt? 3 etrepticad millys in 1508 . Zone olong tropath & mon, \\
\hline
\end{tabular}

Fioure 17. Section through Beekmantown along Chesapeake and Ohio Canal at Pinesburg Station (Measured by R. Neuman).

15
limestone rubble. A 10 ft . embankment is above the coping. Ledges of Pinesburg Station Dolomite are west of the culvert with beds striking \(\mathrm{N} 15^{\circ} \mathrm{E}\) and dipping \(70^{\circ}\) ESE.
102.64-103.10 QUTCROP 75 to 100 ft . cliffs are on
the berm. The easterm third of the outcrop (102.64-102.77)
is dominantly light gray, mottled, laminated dolomite with interbedded light gray to blue gray, fine grained limestone (Rockdale Run Formation). Agal masses are comon with a prominent one at the east end. Some regular chert is in the limestone. Thick dolomite beds are near the west end. The western part of the outcrop is armillaceous limestone with interbedded dolomite; white and black chert nodules are common. Beds are up to 6 ft . thick, laminated with small folds in the laminae. Some algal masses are present. The beds strike \(\mathrm{N} 15^{\circ} \mathrm{E}\) and dip \(80^{\circ}\) to \(82^{\circ} \mathrm{ESE}\) (Sando, 1957). The Pinesburg Cave (102.74) is near the top of the cliff on the west side of narrow steep ravine. It is a small

479.50. Pile of strms 15 'wide on sivisice of townath; stsyeded saviins luads to rives.

Ficurar 13.-Skectch 3lap of Gcolagic Scction 6 Chiwlto

24fx. cheek specs.
with a 20 ft. span and a 10 ft . rise. 30 ringstones and a
stone, Conococheague Formation, crops out in the stream bed on the berm. The rock beds are 1 to 5 ft. thick and strike \(\mathrm{N} 55^{\circ} \mathrm{E}, \operatorname{dip} 45^{\circ} \mathrm{NW}\). Musselkauffs (Clarks) Mill was formerly 1,500 ft. up Conocheague Creek. A low gravelstrewn terrace on berm extends for one-half mile to the west of the culvert.
105.64-Middr Kanf Cemetary, 270/F. form hirm; on hill 50f8. aton casel MP106-482.35
106. 7 Loading besing; not sean (1975) asense noad hue
106.20 Charles Mill, ho uje od dam on barn-(Chack for correct name).
106.61 482.80 WASTE WEIR This structure is a concrete frame
 num sier
with 3 gates for board inserts.
106.61-106.78 REVETMENT A large pile of river cobbles

on the hill on the berm side of the guard lock. It is a \(11 / 2\) story, whitewashed brick structure, on rubble foundation; constructed in 1837. A wall of coursed limestone rubble is on the towing path from the abutment of the dam downstream for 250 ft . The inner and outer faces of the wall slope \(45^{\circ}\) and the wall has partly collapsed 75 ft. from the dam.

An outcrop of limestone of the Conococheague Formation is on the berm at the guard lock. It is well-bedded and the beds strike \(N 45^{\circ} \mathrm{E}\) and dip \(70^{\circ}\) SE.

Above Dam no. 5 boats used the canal formed by an embankment along shore of pool for \(1,200 \mathrm{ft}\) and then entered slackwater in the pool for 0.4 miles. The towing path along the bank of the pool was constructed in 1837-38. The canal was opened to Dam no. 5 in April, 1835.

3.

\(303 e\)

\(3062\)

Cherles Mill

Choun mill standy 1955.
of the arch. The parapet and coping are 3 ft . high. Wing
stone. The timber second story has now fallen. The west part was a plaster mill. It was a two story, masonry building. The roof and walls are now collapsed. A 20 ft . steel water wheel is in place.
108.19-108.44 OUTCROP ON BERM Ledges of limestone (Conococheague Formation) form low bluffs. The limestone is dark gray to black, thick bedded to massive. The beds strike \(N 40^{\circ} \mathrm{E}, \operatorname{dip} 45^{\circ}\) to \(60^{\circ} \mathrm{NW}\) to center of a syncline at 108.23; dip is \(25^{\circ}\) to \(30^{\circ} \mathrm{SE}\) on the west limb of the syncline. Orange clay stains the ledges at solution openings
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{at 108.16. A small cave opening is at 108.08. Prismatic} \\
\hline 1 & & \\
\hline 2 & \multicolumn{2}{|l|}{jointing in the beds is prominent at the center and the} \\
\hline 3 & \multicolumn{2}{|l|}{west end of the outcrop. Rubble masonry walls are along} \\
\hline & \multicolumn{2}{|l|}{} \\
\hline 6 & 108. 49 oed boat bain on fum and stome dock \(300 f\) f. long, \(80 f\). wede avergrawn. & \\
\hline 7 & 108.71 LOKK \(4781 / 4 \mathrm{ft}\). lift, constructed 1835-38. & \\
\hline 8 & \multicolumn{2}{|l|}{The face is hammer dressed limestone from Prather's quarry,} \\
\hline & \multicolumn{2}{|l|}{sag on tounath; bulye on bum at lock mave (lown).} \\
\hline \[
10 .
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
1 mile south. Some red sandstone slabs are in the limestone \\

\end{tabular}} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
revetment wall on the berm below the lock. Wall on troppoth at \\

\end{tabular}} \\
\hline 12 & \multicolumn{2}{|l|}{pownesth upper end.} \\
\hline 14 & & alynismont Fon foritam \\
\hline & The face is hammer-dressed limestone from Prathers quarry. & \[
147=484.95
\]
\[
\text { Basin - } 465,12
\] \\
\hline 16 & The lock is built over a sinkhole and it began sinking in & \\
\hline 18 & \multicolumn{2}{|l|}{1839. The foundations were rebuilt and the face of the} \\
\hline 19 & chamber trimmed in 1370. The lower half of the chamber now & \\
\hline \multicolumn{3}{|l|}{\(20-\)} \\
\hline 21 & \multicolumn{2}{|l|}{sags inward 2 ft . on each side and is held up by heavy} \\
\hline 22 & \multirow[t]{2}{*}{timber bracing in the chamber. The rubble foundations on} & \\
\hline 23 & & \\
\hline 24 & the berm formerly supported a building built over the flume flume 10 fv , on berm; 10 fv . wide; apilewey at frosit 4 fs ards. & \\
\hline
\end{tabular}
revetment:- of coursed 11mestone is on the bexm ond towing\(20 f t\). flane on thiving path, \(75 / \mathrm{K}\). along troprath edge. path between Locks 48 and 49.
108.82 CULVERT 139 Constructed 1835-38, road culvert. This culvert carries Neck Road under the canal. The coping and segmental arch is cut, wavy-banded limestone with a 12 ft. span and a 4 ft . rise. 14 ringstones and a keystone are in the face of the arch. The abutments and skewbacks are 6 ft . high and the parapet and coping are 5 ft . high. Ving walls are flared. Spandrels, wingwalls and parapet are coursed liménstone rubble masonry. A 12 ft . embankment is above coping. Lockhouse on berm ? ne evidence. 108.86 LOCK \(4981 / 4 \mathrm{ft}\). lift, constructed 1836-38. The face is hammer-dressed, wavy-banded limestone from Prather's quarry. There is limestone pavement in the canal bed for 30 ft . below lock with the blocks laid vertically across the prism. The flume is on the berm 15 ft . from the lock. The spillway of the flume is at the front of

\begin{tabular}{|c|c|c|}
\hline & wide are prominent in this outcrop. & \\
\hline 1 & & \\
\hline 2 & 109.32 (109.15) WASTE WEIR \({ }^{\frac{53}{58}}\) original overfall constructed 1836- & \\
\hline 3 & 485.96 & \\
\hline 4 & 37. The present structure, on east side of towing path, is & \\
\hline \(5-\) & a concrete frame with 3 gates: 21 ron paddles, each \(3 \times 4\) & \\
\hline 6
7 & \begin{tabular}{l}
frame 10 ft. wide, flemex \(15 / 4\). unde. Wall along both brum and tropeth sude fruion flac hores so wain wier. \\
ft. are in the frame. Slot openings for boards are above
\end{tabular} & \\
\hline 7 & & \\
\hline 8 & the paddles and in the third gate. The channel south of & \\
\hline 9 & . forerr 100 A . & \\
\hline \[
10-
\] & the weir is lined with coursed limestone rubole. \(A\) con- & \\
\hline 11 & crete slab bridge with limestone abutments carries the tow- & \\
\hline 12 & & \\
\hline 13 & ing path over the waste channel. Solution ribs with up to & \\
\hline 14 & \begin{tabular}{l}
Frunuly an enfrual aviflor, not mov nivible \\
\(1 / 4\) inch relief are on the abutment blocks.
\end{tabular} & \\
\hline 15- & 486.00 Puctmant on rinvide of trogeth at cuour jist yestruan of cracti woic & \\
\hline 16 & 109.42-109.77 OUTCROP ON BERM Low ledges are formed of & 486,20- \\
\hline \(: 7\) & \[
(109.25-109.60)
\] & \begin{tabular}{l}
48, 35 \\
Limestric
\end{tabular} \\
\hline 18 & limestone of the Conococheague Formation. The limestone & \begin{tabular}{l}
autuop in \\
cut fraene \(\mathrm{c} \times\) frem.
\end{tabular} \\
\hline 19 & Is cozrtic, dense giry to black, and the beds are \(1 / 2\) to & \\
\hline 20- & & \\
\hline 21 & 2 ft . There are occasional beds about 1 ft . thick of gray & \\
\hline 22 & limestone. A zone of black chert 1 ft . thick is in the & \\
\hline 23 & & \\
\hline 24 & west part of the outcrop. The beds strike \(N 20^{\circ}\), E and dip & \\
\hline 25- & & \\
\hline
\end{tabular}

vertical on the east and \(60^{\circ} \mathrm{ESE}\) on west end. From here to
Mccoys Ferry limestone sinkholes in the bed of the canal
are serious problems. Several recent subsidences are on
the berm. A flood plain and terraces rising to 160 ft . above river ease prominent on the West Virginia side of the river.
canal, downstream \(\rightarrow\)
(109.5) 486.45 Mouth Inaentain H.B.O.
\(109.83(109.66)\) CULVERT 140 Constructed 1835-37. This
486.52 ? 2 .
is a road culvert 106 it. long. The coping and arch are cut limestone. The semicircular arch has 10 it. span and
a 5 ft. rise. 14 ringstones and a keystone are in the face of the arch. The keystone is \(11 / 2\) it. wide at top and 1 ft. wide at the base. The abutments are 5 ft . high. The

Same on berm.

10 to 15 ft . in diameter and 8 ft . deep. Sinkholes at 486.75
110.24 (i10.05) STOP GATE Diagram on hand
₹ 486.92 MP 110 at 486.78 Sindholen aler at \(M\) P110 in priom.
gate is faced with hammer-dressed limestone. The structure
is 20 ft . long and 17 ft . wide with a recess 12 ft . long.

There is a notch, 2 inches wide, 5 inches deep, for planks
at the lower end. An outcrop of Tuscarora Quartzite with
shale partings forms a low ledge on the berm. The rock is highly cleaved and fractured. Beds strike \(N 35^{\circ} \mathrm{E}\) and dip
\(45^{\circ}\) SE. The structure is overturned towards the west. Olive-
gray shale, Rose Hill Formation is at the west end of the
ledge. The North Mountain Fault is just east of the outcrop. The Tuscarora Quartzite also exposed in the Western Maryland Railway cut above the ledge. Here, 20 ft . of brown sandy shale is underlain by red iron shaly sandstone 10 ft. thick, and olive shale of which 10 ft . is exposed.

DO NOT TRESPASS ON THE RAILROAD, IT IS DANGEROUS AND ILLEGAL. WESTERN MARYLAND TRAINS APPROACH QUIETLY AND FAST, VISIBILITY IS LIMITED BY CURVES AND CUTS.

Sketch plan of buttuoces on hand \(110.36(110.17)\) CULVERT 142 MCCOYS FERRY ROAT Constructed
487.05 1837, partly rebuilt 1839. The coping and segmental arch are cut wavy-banded limestone. The arch has a 12 ft . span and a 4 ft . rise. 14 ringstones and a keystone are in the
battered 1 on 3. Spandrels, parapet and butresses are
 hammer-dressed limestone except for concrete repairs in the arch and spandrel on the towing path side. Old blocks from the repaired area are now on the side of the road. A 10 ft . embankment is above the coping.

During constructs on of canal in 1835-30, a warehouse for storage of cement was at McCoys Ferry. On July 29, 1864, Confederate troops urier the command of McCausland and Johnson crossed the Potomac River at McCoys Ferry enroute to a
raid on Chambersburg, Pa. The Western Maryland Railway
trestle (Bridge no. 1018) to the north of the culvert is a 2 track, deck, plate girder trestle on two bents and 4 towers. It was built in 1929 by the McClintic Marshall Company, Pittsburgh, Pa., to replace an older structure. A prominent cliff of Tuscarora Quartzite is on the West Virginia shore of the river.
110.39 (110.20) CULVERT 143 GREEN SPRING RUN Constructed 487.08
1835-37. The coping and semicircular arch are cut, wavybanded limestone. The arch has an \(\neq 6 \mathrm{ft}\). span and a \(\frac{3}{4} \mathrm{ft}\). rise. There are 8 ringstones and a prominent keystone in the face of the arch. The abutments are 6 ft . high and the parapet \(2 n d\) coping are 2 ft . high. Wing walls are at right angles to the face of the culvert. Spandrels, parapet and wing walls are hammer-dressed, gray, wavy-banded limestone. A coursed limestone rubble wall, 8 ft . high, is above the culvert on the towing path side. A limestone retaining
25- wall extends from culvert 142 to culvert 143 on the berm.

487.45 Atsyphaded ravic at siviside of towgeath. Iofy. wids.
\begin{tabular}{|c|c|c|}
\hline 1 & 110.80 (110.62) CULVERT 144 Constructed 1836-38. The 487.48 & \\
\hline 2 & coping and semicircular arch are cut limestone. The arch & \\
\hline 3 & \[
\text { has an } \stackrel{6}{\neq} \mathrm{ft} \text {. span and a } 3_{4} \mathrm{ft} \text {. rise. } 10 \text { ringstones and key- }
\] & \\
\hline \[
5-
\] & stone are in the face of the arch. The abutments are 1 ft . & \\
\hline 6 & high and the parapet and coping are 15 ft . high. Spandrels & \\
\hline 7 & & Tauplith \\
\hline & and parapet are dressed black limestone. A 10 ft . embank- & \[
487.80
\] \\
\hline 10- & 10 f e entratureat abrin cojing. same on hum. ment is above the coping. & \begin{tabular}{l}
begin \\
struc 5 \\
120
\end{tabular} \\
\hline & MPIII 487.89 & 488.20 \\
\hline 12 & \(110.90-111.12\)
\((110.70-110.92)\) TERRACE ON BERM A gravel covered bench & - cmohed strue; nuitad. \\
\hline & is 40 ft . above river. The canal was built along the front & \\
\hline 14 & of this terrace, 20 to 30 ft . above low flood plain on the & \\
\hline 15-1 & & \\
\hline & river side. & \\
\hline \({ }^{17}\) & & \\
\hline :8 & 111.20 (111.00) The canal is on a high flood plain from & \\
\hline 19 & \begin{tabular}{l}
Ft Frederick in this urra of flord phim. \\
here to west of Big Pool.
\end{tabular} & \\
\hline \(21{ }^{20}\) & 111.25 Boat basion on bram; mowr grown ove. & \\
\hline 22 & 11.34 (111.14) CULVERT 145 Constructed 1837-38. The
488.01 & \\
\hline & semicircular arch has a 6 ft . span and 3 ft . rise. \(10 \mathrm{ring}-\) & \\
\hline 24 & stones and a keystone are in the face of the arch. The & \\
\hline
\end{tabular}

8 ringstones and a keystone in the face of the arch are cut Embembunt and box:
dark limestone. The abutments are 3 ft . high and the parasame on bum
pet and coping are 6 ft . high. \({ }^{\text {n }}\) They are coursed limestone 8 ft. antankencti atom erpeng. rubble. The wings are limestone and pebbly sandstone rubble 20 p . from

Large rounded, sandstone boulders, up to 3 ft . in diameter, are in flood plain deposits below the mouth of the culvert. \(1 / 2 p\).acc

```

are hammer-dressed ilmestone. The culvert is silted to the
arings at riget angles on trupath 10ft lay.
springing line (1971).
112.37 (112.22) FT. FREDERICK STOP LOCK AND BRIDGES The
489.02

```
stop lock is built of hammer-dressed blocks of Ridgley
(Oriskany) sandstone and concrete. The lock is 20 ft . longs
 17 ft . wide and 7 ft . deep. A plank bridge now carries a
 road across the lock. A pivot bridge formerly crossed the
 lock. The stone and concrete piers and anchors with slabs
 of iron at the west end of lock, are remnants of a fixed
 timber bridge. The bridge was a queen-post triss on timber
 pents, 17 ft . above the canal. Some red sandstone rubble
 fevetment is along the canal west of the stop lock.
 Curvo wings on towpoth side, 25 ft . long; flaned urngs, \(45^{\circ}\), on \(\mathrm{kmm}, 16 \mathrm{ft}\). lony doundruam
12 f . long ypethem.
 Ft. Frederick, 1,500 ft. north of canal, was built in
 \({ }_{21}^{20-} 7756\) during the French and Indian Wars following the defeat
 of General Braddock near Pittsburgh, Pennsylvania. The stone
 walls are 20 ft . high and are 240 feet square. It was aband-
 25-oned in 1791 but was reoccupied in 1861 during the Civil War.
489.02 Stop gate

In 1922 it was purchased by the State of Maryland at which time the walls were a pile of mable. The walls and bastion were restored in 1934 and the State Park now covers 279 acres. 112.50 (112.32) SOUTHEAST END OF BIG POOL This is an 489.12
area of widewater, \(11 / 2\) miles long and up to 700 ft wide. It was formed by placing the towing path embankment across low swampy ground. The rubble revetment along the towing path contains red sandstone from the (Jennings) Formlation and Ridgley (Oriskany) sandstone. After 1900 Big Pool was apopular place for summer cabins, swimming and pleasure boats.
112.75 (112.60) MEADOW ON RIVER SIDE OF CANAL A high flood plain about 20 ft . above the Potomac River is between the canal and river.

Sketch plan?
\(113.15(113.00)\) OVERFALL (WASTE WEIR 55) The spillway is 121? \(\quad 489.90=\) MP 13.
1\%0 ft. long with a crest 16 ft . wide. The spillway drops 25-

\begin{tabular}{|c|c|}
\hline & thick at the top and \(51 / 2 \mathrm{ft}\). thick at the base. The aque- \\
\hline 1 & \\
\hline 2 & duct is constructed of Tonoloway Limestone from Bains quarry, \\
\hline 3 & On Licking Creek, \(3 / 4\) mile NNE of the aqueduct. Some lime- \\
\hline 4 & \\
\hline 5 - & stone is from Prathers Neck. The Iimestone is gray, knobbly \\
\hline 6 & with some wavy bands. Arch stones, skewbacks, water table, \\
\hline 7 & \\
\hline 8 & coping and the inside of parapet are cut, the rest of the \\
\hline 9 & stone is coursed, trimmed rubble work. The skewbacks and 5 \\
\hline \(10-\) & \\
\hline 11 & to ? ringstones adjacent to the skewbacks are failing from \\
\hline 12 & pressure exceeding the compressive strengtheof the stone. \\
\hline 13 & \\
\hline 14 & They are highly fractured and crushed. Timber for the old \\
\hline 15- & trunk and berm wall are imbedded in the water table. The 10 \\
\hline 16 & \\
\hline 17 & inch timbers are spaced 3 ft , and set in concrete with \\
\hline 18 & coarse limestone aggregate. The timoer trunk was placed \\
\hline 19 & \\
\hline \(20-\) & about 1874 when the masonry berm parapet was removed. The \\
\hline 21 & towing path side of the parapet and arch are shoved out of \\
\hline 22 & \\
\hline 23 & line by 8 inches and iron stay rods are in a tier of blocks \\
\hline 24 & below water table to stabilize the faces. The Aqueduct was \\
\hline \(25-\) & \\
\hline
\end{tabular}
grouted in 1338 with bituminous "American" cement to stop
hears. There is a slot in the concrete at the west end of
the aqueduct for a stop gate. Cut faces on the arch stones
above normal high water level are deeply etched by solution
leaving the less soluble, silicic veins standing \(1 / 8\) to \(1 / 2\)
inch above the weathered surface. Below normal high water
level, hammer-dressed and cut faces are scalloped by solution
to a depth of an inch. Etching of the cut faces in the
waterway are similar to those of the arch stones. The re-
mains of an iron railing are on the lower and upper wings.

Western Maryland Railway bridge no. 1076 is 300 ft. north
of the Aqueduct. It has 3 deck plate girder spans.
348.62. drain intis canal on fum. 200 p. long tot hg delis in priam

MPH 347.50
\(\begin{array}{cl}116.91 & \text { (117.04) }\end{array} \begin{gathered}\text { (Distance between mileposts } 116 \text { and } 117 \\ \text { is only } 0.63 \text { mile) }\end{gathered}\)
20- \(342.8 / 342.85\) coping and segmental arch are cut limestone. The arch has a 6 fit. span and 2 ft . rise with 6 ringstones and a keystone in the face. The parapet and coping are \(21 / 2 \mathrm{ft}\).

No wing walls
stone rubble. Fie culvert is silted and flooded to the top of the arch. The meadow to the south of the canal, extending west to \(117.64(118.0)\), is a terrace 20 to 25 ft . above river level. Large sink over turk on towpath side of prion, \(3 / v\). diff, \(10 / \mathrm{f}\). dianiter; small sinks across canal orr bail g culvert. (1975) 116.96 (117.09) CULVERT This is a circular concrete cullvert, built \(\sin ^{\prime} 1955\), to carry drainage from Interstate Highway 70. 6 fr pan, spring at ate hurl, no wings. 117.40-118.25 (117.55-118.40) OUTCROP A hishway cut on Interstate Highway 70 is in the Chemund Formation. Red shale and interbedded sandstone are, exposed near the top of summer. the cut with gray sandstone and shale below. At the west end of the exposure the beds are mainly chocolate brow shale. The cut is in a syncline with the strike \(N 5^{\circ} \mathrm{E}\) and the dip \(14^{\circ} \mathrm{W}\) on east limb. The strike is \(\mathrm{N} 40^{\circ} \mathrm{E}\), dip \(15^{\circ}\) to \(28^{\circ}\) SE on the west limb.

23
24
117.45 (117.61) CULVERT 162 constructed 1837. The semi

\(118.14(118.29)\), on the hillside 0.1 mile to north/in red
sandstone of the Chemung Formation was the source of stone
used in culverts /162, 164 and 166 .
\(118.35(118.50)\)
346.01 CULVERT 164 The original culvert was 346.01 - 344.3
constructed in 1837 but is now buried beneath an: embankment.

The new culvert, 30 ft, to the west, was constructed to Interstate Highway 70

6
drain \(I-70\) and is a corrugated steel pipe, \(f \mathrm{ft}\). in diameter b No wings
encased in concrete. Slabs of gray and dark gray fissile (Chemung Formation)

Canowny acres friars.

moved upslope in \(1836-38\) to provide room for the cenal. It
was moved further upslope in 1903506 when the Westem Rail-
way was constructed between Big Pool and Cumberland. In

The early 1960.s the position of the road, then U.S.40, was Interstate Highway 70.
usurped by \(x\) During construction of the canal, on

August 8, 1837, a stage coach plunged 40 ft . off the new
8

9 road into the canal at Millstone Point. A woman passenger,
her daughter and a man were killed. 4 others were injured.

2 The accident occurred because the driver fell asleep.

13

14 118.61 (118.76) CULVERT 166 AND WASTE WEIR Constructea
15-
1837-38. The semicircular arch is cut limestone with an 8
16
17 ft. span and a 4 ft . rise. 12 ringstones and a keystone
are in the face of the arch. The abutments are 1 ft . high
19
20- on the river side. Spandrels and parapet are coursed lime-

23 mung Formation included. On the berm side, abutments are

24

between the canal and railroad culverts is lined with coursed gray and red sandstone rubble. A concrete frame waste weir with 3 gates for drop boards is on the berm side
 5- chat anat; 15 AP aries, coach gray limetan and firm grained limestone.
118.64 (118.79) OUTCROP A ledge on the berm is formvichein summon.
ed of Parkhead Sandstone, Harrell Formation. The beds strike \(N 40^{\circ} \mathrm{E}\) and \(\operatorname{dip} 15^{\circ} \mathrm{SE}\) at the east end of the outcrop. The
sandstone is up to 20 ft . thick with beds 2 to 10 ft . thick with beds 2 to 10 ft . thick. It is underlain by olive gray shale. On the west the sandstone is gray, dense, forming a ledge 20 ft . high. The strike at the ledge is \(N 50^{\circ} \mathrm{E}\). A prominent strike joint. dips \(60^{\circ} \mathrm{NW}\) and a transverse joint dips \(70^{\circ}\) SW.
118.69-118.70 (118.84-118.85) OUTCROP The Chemung Formveil in summer.
ation, gray shale, strikes \(N 40^{\circ} \mathrm{E}\) and dips \(30^{\circ}\) SE on the berm

Pink-brown shale of the Chemung Formation is exposed in a

\begin{tabular}{|c|c|}
\hline & by terrace deposit of cobbly silt. \\
\hline & \\
\hline 2 & 9.3 struc frineatisis on fum \(=\) Mr 50) \\
\hline , & 118.96-119.34 (119.12-119 \(\wedge\) TERRACE The meadow on the \\
\hline 4 & de of the towing path is a high flood plain \\
\hline & westward into a terrace \(25-30 \mathrm{ft}\). above the river. Wash \\
\hline 7 & fills canal to within 2 ft. of towing path (1972) at this \\
\hline 8 & 345.48 ; semiler wash of 345,30 \\
\hline 10- & \multirow[t]{2}{*}{\begin{tabular}{l}
canal here. old NPS Canygraind on muedow (1475). \\
Canputh had 5 tatho, oulthund, 4 thath havile \\
 \\

\end{tabular}} \\
\hline 11 & \\
\hline 12 & \(119.69(119.85)\) CULVERT 170 AND WASTE WETR Constructed \\
\hline & 1835-38. The semicircular arch is cut limestone with a \\
\hline 14 & \\
\hline 15- & span of 8 ft . and a rise of \(4 \mathrm{ft}, 12 \mathrm{ringstones}\) and a key- \\
\hline 16 & \multirow[t]{2}{*}{stone are in the face of the arch. Coursed rubble masonry} \\
\hline & \\
\hline 8 & is in the arch in the barrel of the culvert. The parapet \\
\hline 19 & and coping are 4 ft . high. The coping is coursed, trimmed \\
\hline 21 & limestone rubble; spandrels and parapet are coursed lime- \\
\hline & stone and red sandstone rubble. The waste weir on the \\
\hline 24 & berill side of the culvart is a concrete fexergit ure with 3 \\
\hline & \\
\hline & ates for board inserts. The walls of the weir are \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline & The subrecesses are similar to Lock 51. Slots for boards \\
\hline 1 & of a stop gate are in the walls above the breast wall. A \\
\hline 3 & pile of rubble, 20 ft . long, on the berm is at the head of \\
\hline \(5-\) & the lock and is probably the remains of a fender crib. A \\
\hline 6 & footbridge is over the tail of the lock. The lockhouse is \\
\hline 7
8 & on the towing path side. It was formerly a frame structure \\
\hline , & only the rubble foundation remains. The foundation is pri- \\
\hline \(10-\) & marily cobbles of sandstone, slabs of red and gray sandstone \\
\hline 12 & and some limestone. A retaining wall, 150 ft . long, is be- \\
\hline 13 & \\
\hline 14 & 10w \\
\hline 15- & stone rubble. A similar wall extends 25 ft . below the lock \\
\hline 16 & on the berm and it contains some red sandstone. Limestone \\
\hline 17 & \\
\hline 18 & walls are also on the towing path and berm, 180 ft . long, \\
\hline 19 & connecting Lock 52 and the aqueduct to west. \\
\hline 21
22 & \[
122.94 \text { (122.98) GREAT TONOLOWAY (no. 7) AQUEDUCT } \text { Construct }
\] \\
\hline 23
-24 & ed \(1835-39\), cost \(\$ 48,423.10\) including entrance walls. Arch flowe cings \\
\hline 25 & Stongis factige and coping are limestone from Herts Quarry on \\
\hline & \begin{tabular}{l}
Anh gaquelset hing repaind 1475 . \\
besti win at aquelyd \(=3\) gotws, mep pallhe. \\
MP123 \(=350,25 / 356,78\)
\end{tabular} \\
\hline
\end{tabular}
artie ronoloway Creek, 1.34 miles upstream from the canal.

The limestone backing is from along the canal. The aqueduct
is a single, semicircular, irregular arch with a span of 63
ft. 3 inches and a 20 ft . rise. The springing line is at
the top of the abutment, 4 ft . above the stream, on the west.

On the east it is on a rock ledge 16 ft . above stream. If fully developed the arch would have a span of 80 ft . There= are 30 ringstones on the west of the keystone and 16 on the

15-the stream and 42.1 ft . above the foundations. An 8-inch pelt is at the top of the arch. The parapet was formerly 7
\({ }_{21}\) wide at the base on the berm. The coping and belt are fine

\begin{tabular}{|c|c|}
\hline & exposures of the Chemung Formation, drap gray to brown, \\
\hline 1 & \\
\hline 2 & irregulariy bedded sandstone and crumbly shale are on the \\
\hline 3 & berm The beds strike \(\mathrm{N} 40^{\circ} \mathrm{E}\) and dip \(45^{\circ}\) to \(75^{\circ} \mathrm{SE}\). \\
\hline 4 & \\
\hline \(5-\) & 123.27-123.40 (123.30-123.43) TERRACE Deposits of tan to \\
\hline 6 & \\
\hline 7 & buff gray, pebbly, cobbly, silty, sand are exposed in a cut \\
\hline 8 & on the Western Maryland Railway. \\
\hline 9 & \\
\hline 10- & 123.56 (123.59) CANAL BOAT 57 Planks and iron bolts in \\
\hline 11 & \\
\hline 12 & the \\
\hline 13 & \\
\hline & 123.58 (123.61) OUTCROP Gray, fine grained shaly sand- \\
\hline 14 & \\
\hline 15- & stone Chemung Formation is on the berm. The beds strike \\
\hline 16 & \(N 40^{\circ} \mathrm{E}\) and dip \(65^{\circ} \mathrm{SE}\). \\
\hline 17 & \\
\hline 18 & 123.82 (123.85) WALI ON BERM This wall is constructed \\
\hline 19 & \\
\hline 20- & primarily of rounded sandstone cobbles from the terrace \\
\hline 21 & deposits. \\
\hline 22 & \\
\hline 23 & \[
123.84 \text { (123.88) Taney (P.T.Liftle) HAREHOUSE A timber frame, clapboard }
\] \\
\hline 24 & \begin{tabular}{l}
\(137 \mathrm{fr} \cdot \log \mathrm{x} \times 10\).p. \(A\) \\
 structure is on the berm a large iron ring on the front was
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline & truss \\
\hline \multicolumn{2}{|l|}{1)} \\
\hline 2 & the north approach and 4 deck girder spans oyer the rail- \\
\hline 3 & road at the north end. The roadway is 24 ft . wide; the \\
\hline \multicolumn{2}{|l|}{4 ,} \\
\hline \(5-\) & bridge cost \$972,462.30. \\
\hline 6 & 125.11 (125.15) CIUVERT \(183^{3}\) ? \\
\hline 7 & \[
\begin{aligned}
& 125.11 \text { (125.15) CULVERT 184 30, } \\
& 512.18
\end{aligned}
\] \\
\hline 8 & structed 1835-37. The semicircular arc \\
\hline 9 & \\
\hline - & with a 4 ft . span and a 2 ft . rise. 10 ringstones and a . \\
\hline 11 & keystone are in the face of the arch. Abutments are 1 ft . \\
\hline \multicolumn{2}{|l|}{12} \\
\hline 13 & high and the parapet and coping are 4 f . high. Spandrels, \\
\hline 14 & parepet and coping are coursed rubble of Ridgeley (Oriskany) \\
\hline \multicolumn{2}{|l|}{\({ }^{15}\)} \\
\hline 16 & Sandstone. A 10 ft . embenkment is above coping. \\
\hline \({ }^{17}\) & \(184^{\circ}\) BRENTS \\
\hline 18 & 125.28 (125.34) CULVERT 185 Road culvert, constructed \\
\hline 19 & 1836-37. The semicircular arch is cut limestone with an 8 \\
\hline 20 & ft. span and a 4 ft . rise. 14 ringstones and a keystone are \\
\hline \({ }^{21}\) & \\
\hline 22 & in the face of the arch. The parapet and coping are \(21 / 2\) \\
\hline \multirow[t]{2}{*}{23} & \\
\hline & Spandrels, parapet and coping are coursed lime \\
\hline & Culut in gord enditio; taul ok. Spring line at water lexel. \\
\hline
\end{tabular}

Rebert
\begin{tabular}{|c|}
\hline \multirow[t]{7}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
stone rubble. West of the kilns, in cuts on the Western

Maryland Railway, are ledges of Wills Creek gray limy shale.

The beds strike \(N 60^{\circ} \mathrm{E}\) and dip \(70^{\circ} \mathrm{SE}\). Just east of the old brick chimney is a syncline exposed in the railroad cut with the dip \(30^{\circ}\) Whiw on the east and \(70^{\circ}\) ESE on the west. The

\begin{tabular}{|c|c|}
\hline & \multirow[t]{2}{*}{sandstone and shale. Nearly horizonkal beds} \\
\hline 1 & \\
\hline 2 & \[
\begin{array}{|lll}
129.30-129.40 \quad\left(129.40^{\circ}\right. \\
\text { (129.35-129.44) OUTCROP A ledge on the berm }
\end{array}
\] \\
\hline 3 & \\
\hline 4 & is formed by Rose Eill olive gray to brown shaly sandstone \\
\hline \(5-\) & SHight apparany dép dounstricamat \(5^{\circ}\). and shale. The beds are nearly horizontal. A V shaped weit \\
\hline 6 & \\
\hline 7 & is in the river at 129.40 (129.44).) \\
\hline 8 & contemens ents nest outurp \\
\hline 9 & 129.60 (129.61) OUTCROP A low ledge on the berm is form- \\
\hline 10- & ed by Rose Hill brown sandy shale. The beds strike 4 (\(30^{\circ} \mathrm{E}\) \\
\hline 11 & \\
\hline 12 & anc dip 180\% \(8^{\circ} \mathrm{W} . \quad\) Conterium to wath wirs. \\
\hline 13 & \\
\hline 14 & 129.81 (129.80) WASTE WEIR 63 This is a concrete frame
516.85 \\
\hline 15- & structure with 3 gates for insert boards. The two end gates \\
\hline 16 & \\
\hline 17 & formerly had paddles but these were replaced by insert \\
\hline 18 & boards. Dressed limestone blocks, up to 1 x 2 L . 3 ft ., are \\
\hline 19 & \begin{tabular}{l}
Wring at night anghe, 10 f\%. long on prim side, \(8 / 4\). long on nimsids. Towpurk on Kutu. hode orn wath wirs. \\
in the walls and wings.
\end{tabular} \\
\hline 20- & in the walls and wings. The original overfall at this site \\
\hline 21 & Was constructed in 2837-30. \\
\hline 22 & 516.90 Leopards Mill HBO \\
\hline 23
24 & \(\underset{\substack{130.04 \\ 517.00}}{\substack{\text { LOEK } 53}} 8 \mathrm{ft}\). lift, constructed 1835-37. \\
\hline 25- & The faces are hammer-dressed, white sugary sandstone, Ridge- \\
\hline
\end{tabular}
```

$129.81(129,80)$
516.85
263.7 (19 sup*. 1971)
Waste weir 63
Waste weir below lock 53:
Simistre wings paris. Crests frame, 3 gates,
2 and ones wren paddled gates replaced by braids.
Canal

```


Bum Entantonasis at arlont: \(5 / 7,50+\)

Spandrels and parapet are coursed limestone rubble. The coping is dressed limestone. Coursed limestone rubble is in the wing walls. A 10 ft . embankment is above coping. unis - \(6 A \cdot \sqrt{\downarrow \frac{4 P}{10.7}-4 / A}\)
The site of Leopards Mill is on the river side of the canal at the culvert. It operated until 1835 as a grist mill and from 1835 to 41 it was used by George Shafer as a cement mill to supply cement to the canal.
 131.32 (131.30) CULVERT 194 Road culvert, constructed 518. 21 1836-38. The semicircular arch, 6 ft . span, 3 ft . rise, has Ours aura canal by embankment with steel culvert
8 ringstones and a keystone in the face. The abutments are
5 ft . high. The parapet and coping are 2 ft . high. Wings
\[
10 \mathrm{fl} \cdot \text { lay }, 3 \text { trees nigh } h=6 f \text { thing }
\]
are at right angles to the culvert face. Spandrels, parapet and wings are coursed limestone rubble. A 15 ft. embankment is above the coping, Boat launch ramp, access Road auras canal. 131,5 Foothencte aver canal (net seen) \(518,60+\) revetment on riverside \(2.4 \not \beta 1+\) high.
131.81 Indian fits thy in singmat hew antwerp at 131.82
\(131.82(131.77)\) OUTCROP A low ledge on the berm beneath 518.72
the railroad, is formed by the Bloomsburg Formation, hackly
\begin{tabular}{|c|c|}
\hline & beds of red shaly sandstone, some green shale at base. The \\
\hline 1 & \\
\hline 2 & beds strike \(\mathrm{N} 40^{\circ} \mathrm{E}\) and dip 100 WW \\
\hline 3 & \\
\hline 4 & 131.86-131.95 (131.81-131.90) ouncriop A cut alone the 518.76 \\
\hline & Western Maryland Railway exposes McKenzie gray, limy shale. \\
\hline 6 & \\
\hline 7 & The beds strike \(\mathrm{N} 20^{\circ} \mathrm{E}\), dip \(60^{\circ} \mathrm{ESE}\). A vertical joint strikes \\
\hline 8 & \(\mathrm{N} 70^{\circ} \mathrm{W}\). \\
\hline 9 & \\
\hline 10- & 131.95 (131.90) OUTCROP A ledge 30 ft . high is on the \\
\hline 11 & 518.85 \\
\hline 12 & berm. It is formed by red, massive sandstone, Bloomsburg \\
\hline 13 & Forination. Strike at Rigat anghe to canal, dip \(5^{+0}\) domentrocm (apparent). \\
\hline 14 & \[
132 \mathrm{MP}=518,95
\] \\
\hline 15- & 132.08 (132.03) CULVERT 195 Sick Coon \(\begin{aligned} & \text { Constructed } 1836 \text {. The semi- }\end{aligned}\) \\
\hline 16 & 518.96 \\
\hline 17 & circular arch is cut, gray, brown stained, sugary, fine- \\
\hline 18 & \\
\hline 19 & \\
\hline \({ }^{20}\) & rise with 8 ringstones (including skewback) and a keystone \\
\hline 21 & in the face. Tine abutments are 2 f \\
\hline 22 & \\
\hline \({ }^{23}\) & and coping are also 2 ft . high. The spandrels and parapet \\
\hline 24 & are coursed sandstone rubble. A 15 ft . embankment is above \\
\hline & (415) \\
\hline
\end{tabular}

300 pace cat from 519,55, nuvenunt 6/4. high on cospleide of triputh

132.88 (132.94) OUTCROF A low ledge on berm contains a
symmetrical anticline in Keefer Sandstone, know as the

Devils Eyebrow. The lower 6 ft . of beds in the anticline are 2 to 6 inches thick. Above this the beds are ap to 1 ft. thick. The rocks are gray, quartzitic sandstone tinted brown. 40 ft . of the formation are exposed. The beds strike \(N 20^{\circ} \mathrm{E}\), dip \(45^{\circ} \mathrm{SE}\) on the downstream side and strike \(N 40^{\circ}\) E, \(\operatorname{dip} 48^{\circ} N N\) on the upstream side.

Diagram from field notes \(8 / 30 / 69\) Draft \(8 \times 8\), final \(4 \times 4\).
132.92 Indian finch thy in in.
132.94 (133.00) OUTCROP Cuts along Western Maryland Rail-
16

Maryland Railway expose a syncline,an anticline and a syn-
\(37 / 2\)
132.88 Anticlive in Kufu Ss.
519.75
(76.3 dentance 8.30 .69)

\begin{tabular}{|c|c|}
\hline & The Nills Creek is primarily green to gray, clajey and limy \\
\hline 1 & shale. The Bloomsburg is mainly red shaly sandstone and \\
\hline 3
4 & red, green and bluish shale. at \(133.09(76.48)\) Red hdo m cution \(W M R_{y}\) - \(W_{+1}+\ldots+\ldots E\) \\
\hline \(5-\) & \multirow[t]{2}{*}{Diagram- field notes 8/30/69 10-11. draft \(4 \times 8\), final \(2 \times 4\).} \\
\hline 6 & \\
\hline 7 & \\
\hline 8 & 133. 24 (133.30) WASTE WEIP 65
520,10 The original overfall was \\
\hline 9 & constructed 1838. The waste is now a concrete frame with \\
\hline 10- & \\
\hline 11 & 3 gates for insert boards. concrete wings, 15 ft . long are \\
\hline 12 & on the canal and river side of the waste weir. \\
\hline 13 & \\
\hline 14 & 133.49-133.58 (133.56-133.65) \&VICROP An exposure ef \\
\hline 15- & \\
\hline 16 & Wills Creek Shale is along the Western Maryland Railway. \\
\hline 17 & There is a broad anticline on the west and a tight anti- \\
\hline 18 & cine and shear colds on the east. small thrust planes \\
\hline 19 & cline and shear folds on the east. Small thrust planes \\
\hline 20- & are common. The rock is dominantly gray shale and sand- \\
\hline 21 & \\
\hline 22 & stone. Red sandstone of the Bloomsburg Eormation is at \\
\hline 23 & \multirow[t]{3}{*}{\begin{tabular}{l}
the west end of the exposure. \\
133, IS Sndian fick kup in sins \\
133.60 Cacapon gurction HBO
5.20 .45 520.45
\end{tabular}} \\
\hline 24 & \\
\hline 25- & \\
\hline
\end{tabular}

Dam no. 6 a vicinity

\begin{tabular}{|c|c|}
\hline & over the inlet lock. The revetment along the river bank \\
\hline 1 & extends 60 ft. downstream from the Maryland abutment. There \\
\hline 3 & is a stone guard wall on the river side of the feeder down- \\
\hline 4 & stream from the inlet lock. \\
\hline 6 & LOCK 557.8 ft lift, constructed 1836- \\
\hline & 40. The lock is at the north end of the guard wall of Dam \\
\hline & no. 6. It is faced with hammer-dressed Ridgeley (Oriskany) \\
\hline 11 & andstone from a quarry 200 ft . to the west at the south \\
\hline 12 & end of Tonoloway Ridge. The diagonal break in the stonework \\
\hline \[
14
\] & below the lower recess is the junction between the old guard \\
\hline & wall ane the lock walls that were built later. Slots for \\
\hline \[
17
\] & stop gate boards are in the walls of the lock above the \\
\hline 18
19 & preast wall. The revetment on the upper berm, 15 ft . long, \\
\hline & probably the remains of a fender crib. Bolts on th \\
\hline 21 & upper wing, towing path side, are probably from timber fend- \\
\hline 23 & The miter frame is visible in the upper recess. The \\
\hline & lockhouse was on the berm but only the stone foundation \\
\hline
\end{tabular}

Sketched

380 む。

\begin{tabular}{|c|c|}
\hline & footings are exposed.] \\
\hline 1 & \\
\hline 2 & 135.20 CUTCRCP cuts along the road on the beriis side \\
\hline 3 & 解 \\
\hline 4 & are in deep silty soilexposed in a nearly vertical face. \\
\hline \(5-\) & The soil on the face of the cut is channeled by deep groov \\
\hline 6 & \\
\hline 7 & The ability to stand in steep cut slopes is characteristic \\
\hline 8 & of silty soils with fragments of shale that develop from \\
\hline 9 & \\
\hline 10- & Middle Devonian shale formations. \\
\hline 11 & \\
\hline 12 & 135.80
522.61 CULVERT 201 Constructed 1837-38, completed \\
\hline 13 & 1840. The semicircular arch is cut white pidgeley (orisk- \\
\hline 14 & \\
\hline 15- & any) Sandstone with a 10 ft . span and a 5 ft . rise. 18 incl. shentachs \\
\hline 16 & ringstones and a keystone are in the face of the arch. The \\
\hline 17 & \\
\hline 18 & abutments are 2 ft . high and the parapet and coping are \\
\hline 19 & \(11 / 2 \mathrm{ft}\). high. The spandrels and parapet ae coursed red \\
\hline 20- & \\
\hline \({ }^{21}\) & sandstone (Catskill) rubble. An embankment is 10 ft . above \\
\hline 22 & the coping. The timber footings of the culvert are exposed \\
\hline 23 & lumge \\
\hline 24 & below the towing path. 7 \\
\hline \(25-\) & \begin{tabular}{l}
situad to frong g ways. \\
Sunfer tentur, \(3^{n} \times 8^{\prime \prime}\) parlel th culnet; enos thitions \(10^{\circ} \times 10^{\prime \prime}\).
\end{tabular} \\
\hline & (438) \\
\hline
\end{tabular}

freks6-cant.

\[
1-4^{\prime}-1
\]
taillong ox tume - oxesfull, ser unas gate
Lileme, clystrad our lop a tirpate.
poleg limentrone thans mo kowne
thtim wall ator huct po atsp phas.
ho-indince \(g\) ankueni
WMRy. - Fillling tille Binif, 2 gpan,
Sidiling till Aquadwat

Cireulu erdo atend 6"abro hyendind nil
whetis \(1 / 2 \times 21 / 2\) miden 8 mich hkmux ancies

Bece iron slet thar tredorrits? Round and Rquaves trgened at tase.

The sandstone was quarried on Sideling Hill. The appreach
walls are coursed rubile, mainly Pocono Sandstone with some
limestone. The berm wall was removed and a timber tmunk
placec in 1874. The berm side gave way in 1885 and was

20-steelton, Pa.
21
MP \(137=523.68:\)
\(137.00 \quad\),
rebuilt. 14 timbers, each \(10 \times 10\) inches, spaced 4 ft.,
are embedied in concrete in the base of the wateriay. A
waste weir with a concrete frame for three gates and insert
boards is on the berm at the east end of the aqueduct. The
spillway was formerly over a rock ledge at the base of the
railroad bridge. 100 fr. Wht of aquesuct - nd punple saxdetmee cups orot on niviside of troupath - \(8 \% /\) hugh.

Western Maryland Pailway bridge no. 1276 is on
the berm side of the canal. It is a 2 span, deck plate girder: bridge, built 1905, by the Pennsylvania Steel Company,
137.00: \(\frac{\text { OUTCROP }}{523.60}\) Cuts on the Western varyland Railway
expose sandstone and shale of the Pocono Formation. The beds
25 m strike \(N 20^{\circ} \mathrm{E}\) and dip \(65^{\circ} \mathrm{E}\).

Sideling Hill Aqueduct (15 ang. 1971)

\(21 / 2 x / 2 \mathrm{~m}\). in m

squm pigs ende atrun.

99.3
137.9?

Mile 137.09

foints on brddeng plane in staly
sandstone in cut on WM Ry. \(6 S_{\text {xpt }} 1969\)

139.25 (198ypt.1971)

Flume - tail of Lock 57.
Wask on hrom, how and of Lace 57, 30 gy. fiom lock
1 gate, conente, bours placed across 10 ft wike ompell,
10 pt . dire at fint.

Shale is olive gren; surtoment from draw (racim) downstham to MPI45,
Shaly, and grum sanesornc onture at MP145 contumes \(t 531.95^{\circ}\)
outuop ledye 40 gr . high at 532.00 , shah andss., ginm, dip \(50^{\circ}\) u.s., strine N \(40^{\circ} \mathrm{E}\).
Antricine at 50 ff. alm carul \(6 0 \longdiv { 4 5 ^ { \circ } }\)

Construction of canal from 144.90 to 145.70 was very exHnehey ss \(s\),
Sits
pensive because of the steep slopes and lack of earth for
embankment. In 1839 engineers planned a temporary bridge
across the Potomac to get earth from West Virginia. The contractor, however; got earth from the uplands in Maryland and incurred heavy costs in road building.
144.95 (144.99) OUTCROP A ledge on the berm is formed of gray shale and shaly sandstone, Chemung Formation. The beds strike \(N 40^{\circ} \mathrm{E}\) and \(\operatorname{dip} 25^{\circ}\) to \(30^{\circ}\) SE. A high flood plain is on the river side of the canal.

MP 145: 531.92.

up to 2 ft . thick is exposed in a ledge on the berm. The
beds strike \(\frac{30}{} 145^{\circ} \mathrm{E}\) and \(\operatorname{dip} \frac{50}{55^{\circ}} \mathrm{NW} .\left(300^{\circ}\right)\).
20-

21

22

23

24
\(145.86(145.95)\) NASTE WEIR This structure is a concrete 53.2 .82
frame for" 3 gates with board inserts. rimber cribbing is in the wings on the river side. The original overfall was
\begin{tabular}{|c|c|}
\hline & constructeत here in 1850. The concrete waste weir was \\
\hline 1 & built in 1915., dak on munsedeg w.w. \\
\hline 2
3 & \begin{tabular}{l}
MP146: 532, 86 \\
lunde water, caxnal up to 150 ft -inde stanting 100 ft . saet of w.w., enes at Lae mr. 59.
\end{tabular} \\
\hline 4 & \(\underset{533.35}{146.39}(146.50)\) LOCK 59 (ft. lift, composite lock con- \\
\hline \(5-\) & structed 1835-39, completed 1848-49, rebuilt 1872. The \\
\hline 6 & chamber walls are coursed gray sandstone rubble, chemung \\
\hline 7 & \\
\hline 8 & Formation. Hammer-dressed limestone is at the upper end of \\
\hline 9 & the lock. The lock was formerly faced with timber and some \\
\hline 11 & firring and bolts remain. The recesses were faced with \\
\hline 12 & timber. Ridigeley (Oriskany) white sandstone are in the \\
\hline 13
14 & coping at the recesses and the upper end of the lock. The \\
\hline \({ }_{16}{ }^{15-}\) & revetment on the lower berm, 150 ft . long, is a remnant of \\
\hline 17 & the crib extension built in 1831. The miter sill is exposed. \\
\hline 18 & in the upper recess on a longitudinal timber floor. A revet \\
\hline 19 & \\
\hline & ment, 20 ft . long on the upper berm, is probably a remnant \\
\hline \({ }^{21}\) & of a crib fender. There are no slots for stop gates at the \\
\hline 23 & apper end of the lock. The flume on the berm, \({ }^{25} \mathrm{ft}\). from \\
\hline 24 & the lock, has a 2 gate concrete waste, with insert boards, Contronurno wall acrrselown and 1 hook (H2h) \\
\hline
\end{tabular}

3986.

\(L 59\)

\section*{MP \(149=535,85\)}

canal near mile 152. Hammer-dressed limestone and white
sandstone are in the recesses. Remnants of timber facing facing brands \(2 \times 10\) and \(2 \times 8,10 / \mathrm{r}\)-long.
are in the walls of the chamber. The miter frame in the upper recess is exposed and rests on longitudinal timbers Jemier in gate, inset as will.
in the floor of the lock. The lock was rebuilt in 1872. A 19

20-150 ft. revetment wall on the lower berm is a remnant of a crib extension added in 1881. A rock wall extends 20 ft . downstream from the extension. A 20 ft . revetment on the 24 upper berm is probably* a remnant of a crib fender.

\begin{tabular}{|c|c|}
\hline & strike of \(\mathrm{N} 30^{\circ} \mathrm{E}\) and dips of 3 \\
\hline 2 & \[
\underset{\text { Field notes }}{\text { Diagram }} 3^{\prime \prime \prime} \underset{\mathrm{p}}{\mathrm{p}} \mathbf{4}^{\prime \prime} \times 3^{\prime \prime}
\] \\
\hline 3 & \(\checkmark\) Ok \\
\hline \({ }^{4}\) & \begin{tabular}{l}
 of disentinucus outuop. 539,06 - small namm. \\
152.40 (152.01) OUTCROP A ledge on the berm contains 539.32 - 539.45
\end{tabular} \\
\hline 6 & gray, fine grained sandstone with yellow specks in beds up \\
\hline 7
8 & to 4 ft . thick, Chemung Formation. The beds strike \(N 40^{\circ} \mathrm{E}\) \\
\hline 10- & \begin{tabular}{l}
Symaline ar 539.38 \\
dounstrane und gheys chich \(N 40^{\circ} E\), dip \(52^{\circ}\) t \(310^{\circ}\) iupstume atuke \(N 40^{\circ} \mathrm{E}\), dip. \(40^{\circ}\) to \(130^{\circ}\) 40 \(/ 52^{\circ} \rightarrow\) denratuen.
\end{tabular} \\
\hline 11 & 152. 34 (152.66) OUTCROP A low ledge on the berm is form- \\
\hline 12 & ed of gray sandstone, Chemung Formation. Ripple marks are \\
\hline 14 & prominent on the bedding planes. The beds strike \(1140^{\circ} \mathrm{E}\) and \\
\hline 15- & dip \(55^{\circ} \mathrm{SE}\). \\
\hline 17
18 & 152. 59 : (152.74) OUICROP A Lont ledge on the berm is form-
\(539.46-539.50\) \\
\hline 19 & ed of gray sandstone, Chemung Formation. The beds strike \\
\hline 20- & IV \(40^{\circ}\) E and dip \(45^{\circ}\) to \(60^{\circ}\) Nw.-trwards \(300^{\circ}\) \\
\hline 22 & MP153-539.73 \\
\hline 23
24 & \begin{tabular}{l}
152.36 (153.00) NASTE NEIR This structure is a concrete 539.74 (\(75 / 4\) to wast y MP/53. \\
frame with 3 gates for insert boards. A gray sandstone
\end{tabular} \\
\hline \(25-\) & \\
\hline
\end{tabular}

(485)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{2him, then yay aete hes mbible tees \({ }^{2}\)} \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{wrame} \\
\hline \multicolumn{3}{|l|}{华} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & below the lower recess is concrete. Cut white Ridgeley \\
\hline 1 & (Oriskany) sandstone is at the recesses and at the ends of \\
\hline 3 & the lock. Notches for crib fender timbers and an old re- \\
\hline 4 & vetment are on the upper berm side. 20 ft . revetments at \\
\hline 6 & the lower end of the lock are prabibly remnants of crib \\
\hline 7
8 & fenders. The stone for the lock is from a quarry in Twiscs \\
\hline 9 & Hollow above Lock 61. The flume is at the base of a 30 ft . \\
\hline 110 & cliff on the berm. An overfall spillway lined with gray \\
\hline 12 & sandstone rubble is at the lower \({ }^{\text {a }}\) end of the flume. A \\
\hline 13
14 & single gate, concrete frame control is in the flume at the \\
\hline 15- & tail. A footbridge is at the head of the lock. The lock- \\
\hline 16 & Prentice says on berm near loover end of lock house was on the towing path side. It was clapboard but \\
\hline 17 & \\
\hline 18 & only the concrete foundation remains. Shemung grey shale \\
\hline 19 & crops out in the cliff on tine berm. The beds strike \(\mathrm{N}^{4} 0^{\circ} \mathrm{E}\), \\
\hline 20
21 & dip \(25^{\circ}\) SE. A holding basin was just above the lock. Dam \\
\hline 22 & no. 7 was planned to be about 1 mile upstream on the \\
\hline 23
24 & Potomac River and a feeder would have entered the canal at \\
\hline 25- & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & the tail of lock ot. The Daltimore anc onio kellroad was \\
\hline 1 & graded to provide for the pool behind the proposed dam; the \\
\hline 3 & dam was not built. \\
\hline 4 & Oed turning hain 200 fv . dounstream, dd hollow on frem \\
\hline \(5-\) & 154.12 WASTE WEIR, mouth of Atheys (Tunnel) Eiollow. This is 541.00 \\
\hline , & an overfall, 100 ft . lons and 16 ft . wide, constructed in \\
\hline 8 & 1849-50. A concrete frame, 3 gate, board insert waste weir \\
\hline 9 & was placed in the overfall about 1913. The original \\
\hline 10- & \\
\hline 11 & overfall is coursed gray and red sandstone rubble with a \\
\hline 12 & \\
\hline 13 & fround to mect in conmum strue annal channe. Axme masm's mand mina colge dromethen on sim sidk - apguen th dill hole 3 im . long, \(3 / 4 \mathrm{in}\). deanikn. \\
\hline \({ }^{14}\) & Diagram \(8^{i=6} \times 6{ }^{\prime h} \quad 4 " \times 3^{\prime \prime}\) Field notes \(8 / 3 / 71\), p.7. \\
\hline 16 & \\
\hline 17 & \(154.23(154.36)\) OUPCROP
541.16 ? \\
\hline 18
19 & posed on the towing path. The beds strike \(\sqrt{ } 40^{\circ} \equiv\) and dip \\
\hline 20- & \(30^{\circ}\) SE (away from cancl \(\rightarrow\) Mral) \\
\hline 21 & \\
\hline 22 & 154.33 (154.45) OUTCROF Chemung olive gray shale is ex541.15:541.18? \\
\hline 24 & posed on the towing path. It is platy and fissil. The bed \\
\hline & strike \(N 40^{\circ} \mathrm{E}\) and \(\operatorname{dip} 45^{\circ} \mathrm{SE} .3\) sets of joints at right \\
\hline
\end{tabular}

Bunt in sally 1960's. Remnants of lock gate operation wasion shop.
inches long and 20 ft . 2 inches vide. A creosote dip tank was at the north end of the shop. It is a vertical cylinder, 28 1/4 inches outside diameter, 6 ft. deep and formed of 3
\(1 / 16\) inch steel plate. The top is at ground level and there
is a concrete wall on two sides. The tank rests on a con-
crete slab that was elevated to allow the building of a
fire beneath. An old race to the dod isjust below the upper recess but is no: blocked off. Chemung gray sandstone
crops out at the base of the flume spillway.
Locking on turn at head of hick (pu Baron): yes.
551.55-10ad to summit atom Hance leers canal
154.54-154.93 (154.66-155.10) DEEP APPROACEI CUT excavat-
ed in 1836 to 38. Additional work was done in 1847-50. The cut, \(2,322 \mathrm{ft}\). long, up to 79 ft . deed, involved \(213,229 \mathrm{Q}^{\pi}\)
cubic yards of excavation and cost \(\$ 218,000\). The cut is in

Woodmont dark gray, splintery shale, which strikes \(\mathbb{N} 30^{\circ} \mathrm{E}\) and dips \(30^{\circ}\) SE on the towing path side and \(45^{\circ} \mathrm{NN}\) on the berm. Slides in the cut are common. The Tunnel Trail leads

Hill and descends on the south to the South Portal. Terraced spoil banks of shale are along the trail and the mouth of the old ravine, formerly connected with Atheys Hollow, is now blocked by a graded spoil bank. From 154.73 to

6 \(154.98(154.85\) to 155.10\()\) the towing path is on a timber platform \(1,285 \mathrm{ft}\). long. The canal crosses the apex of the 2 anticline at the north end of platform. 700 ft . north of the tunnel, Woodmont gray shale with a rusty brown surface stain is exposed in the cut. Vertical cleavage in the rock is parallel to the strike of the beds. The beds strike \(\mathrm{N} 30^{\circ} \mathrm{E}\), dips \(37^{\circ} \mathrm{NW}\) increasing to \(55^{\circ} \mathrm{NW}\) near the tunnel. Slickensides are well developed on bedding planes. The slickenside surfaces are smooth down dip indicating that the top beds moved down relative to the lower beds. 300 ft . 21 north of the tunnel, joints are well developed on the dip 22 slope cut face. Strike joints are at right angles to the 23
\({ }^{24}\) beds and spaced 3 to 5 ft . Transverse joints are spaced 25-

Tunnce stanted 1836

 dissumefontion apread t Pruthm hich

1837
Invelfomeny 250 mex at cond
\(\int\) February 1,2 or 3 days of coan like demmateatem by max
They \(15^{5}\) Montgonny in mud of 51000 as he coed fuends \(t\) pay painage \(y\) mixus from sugland.

1836 Montgnmy set up smm ment maintainade - havegun - sheno

1837- fanuary 5. Montgonery chsshaiged 7 men. of theren anthen incionnt the Chiag Enginur wants Montyomery to suspend word.
\(1838 \quad 5 / 8+7 \in 5 / 18\)
tren dele 3 who - some etacomy - Prathen Kich.
Co. offered \(50^{\circ}\) on drelear - letor waviss allor rothing
Prower havesd of \(E\) Nagustoren - \(5 / 1 c\)
5/is. Inlitea acrund
5/9- letorus do nit ksener when t bay grewances
 suk rurrege

11/27-3 munkelled in sheft \(D\) - feel dncec shoft when hotk on buchit hoke

Shpt B- 2 hiled 2 urneded \(A\) date
D 4 beled 0 ..
Iprunnely keled - tuacit mpropues thechad
2/15 - Shbness sunnouded hernoll offies; theaterced t quit numoss of wotheis, thuatig ducturtance, 1 derncestin
 mun; adivuce \(M\) - all maw orvd imed nop piffice M- could k mund fenancually, cto in deffecels pexancie \(p^{2}\) =ition

Gey5 - 497 men 116 mineus \& Tunul
6/23- Zrobbe at tummel, man threctimed tron; wonk slowelam. In Gavieng 1838

\(6 / 16\) - Innale lnw, mon staie thew oux fine \(t\) iepond.
inen fhaged ove \(\frac{1}{\text { mass whend tges the to cone. }}\)

 all hand
Dec - 134 men 97 muncess.
\[
\begin{aligned}
& 1,12-1,33 / \mathrm{dan} \\
& \text { - } 1.66 / \text { day } \\
& \text { brge } 0.9144 / \mathrm{der} \\
& \text { Sniths Carpentens } 135-9,50 / \mathrm{dy}
\end{aligned}
\]
\(2 / 21 / 38400\) hands of turnce suot paid for 2 moutsen, Mreaten \(t\) dectiny anks

2/13/38 \(M\) on benteg insobuncy, minees therathet givi stice lirken wots r wbed. M-lifes moit orfe if n's
\(6 / 10138\) Scowsiculs fammering all nuwzoness tuse 8- 2 sxcelliat misess it conk a crick assuled on braving ahift-attachelly \(20-40\) muen intheluto alar motfegation Othey theter

8/12 -
Attrack made on hlutedmen on Sect 281 kg paity of men fram

Thux attacledine slup, same seceped by sivinning siere, one ine nive shts trice \(m\) anm. Intwens vardiend cans, caurad if " 110 cosh 3 pestls 1 ifle, tte. 14 mes womed. Atthel = fuetem hturen Dutchimen and buch.

Thay 4- Gperation it tumme suapended - Neto a dictintanees Frcause g uxemployin \(300-400\) halour mavedeng alony hom I caral with aums caunerg norine
\(42 / 3-17^{2 / 3}\) yen
1013139- 14 rentineed \(t\) proskentery, 9 pumated by for \(x\) empuasonnt, one suat \(t\) levhc for theal, 1 asputted thand fary fored with hevaly byeur hecoses.

1839 maves - 15 mule \(G\).arce - Koulle conth armud men

1839 oir 28 - Dutcteme enjuued by Gicch - AX ney tht in'tunnal area
 contonucd untre \(185 \%\)

Tunnel holed itree 6/5

28 FE6 - M-Kaing thatle wth bquen probless. Inex idec brkeng in thouble at \(N\) int: tunnel - and buck wage

1846 - Sim. 8. Montpany appanted thethe-izankugt.
Herey shy serpuned in island atminitky akkyp Holl. - beconowd

1849-11/13 Örod uriness sumx tunnel
MC ixiliceigh o Day, eonthank:

1850-4/24 Then quit attersuct - coalked drex \(+\angle 61\)-cForpedemk actedunder isfluencu \(g\) illdesit due ners

tunnel in 1849-50 for trimming and placing the arch. A
15- the tunnel and the northern approach. The tunnel lining was
25-
on the river side of the towing path. The house was Breda unsorted brewer suction Prese. and 3 he. 51 in full + mean tropatk are dissents for tunnel. Kiln probably at (511)
spud fill e in Rains adjacent to shafts aton inner.
phonic the, pump, trilits 100 yards upstream of tunnel along troppth.
Note- The tunnel is closed from November 15 to April 1; use

Carry in camp area - tries, troth, pump -in fill to seat. 155.76 (155.90) SECTION HOUSE A large 2 story frame house, Basin

L-shaped in plan with brick foundation, is on the on the fiat

\begin{tabular}{|c|c|}
\hline 1
2 & \\
\hline 3 & ed 1905 by the Pennsylvania Steel Company, Steelton, Pa.; \\
\hline \({ }^{4}\) & The expansion bearings, consisting \(6 f\) a nest of cylindricai \\
\hline 6 & rollers, can be seen on the abutment along the towing path. \\
\hline 7
8 & On berm abutment the bridge is on a fixed bed plate. The \\
\hline 9 & rollers on the towing path side permit adjustment of the \\
\hline 11
11
12 & \begin{tabular}{l}
bridge to thermal expansion and contraction. \\
MAKAKA all arr lattice brams excypt pontals, trop and botro chendp
\end{tabular} \\
\hline 13 & \(156.46(156.67)\)
557.30 WASTE NEIR This structure was built in \\
\hline 14 & 1849-50 as an overfall 100 ft . lone with a drain 16 ft . \\
\hline \({ }^{16}\) & wide. The walls are hamer-dressed,coarse, pebbly white \\
\hline 17 & Oriskany sandstone. The present waste weir is a concrete frame with \\
\hline 18 & Mo padsle gatre \\
\hline 19 & 3 gates for insert boards. A wooden bridge is over the \\
\hline \(20-\) & gate. There is a 15 f ¢. drop over bedrock at the lower \\
\hline 21
22 & end of the waste channel. Chemung gray shale is exposed \\
\hline 23
24 & \begin{tabular}{l}
in the waste channel and the beds strike \(N 55^{\circ} \mathrm{S}\) and dip \(20^{\circ} \mathrm{S}\) \\
 wack; diry \(3 \mathrm{ft} \times 10\) fy. long; boy cit fille gay now.
\end{tabular} \\
\hline \(25-\) & 156.51 (156.71) OUTCROP an anticline on the berm con- \\
\hline
\end{tabular}

Initchall Cut
Gaor wir

13 uritical atrucs, 10 in . wide, 18 im . Aigh under de apillewag lif. Apelluvay in math wall of wack wirin.

\footnotetext{
brige at righe anges, 12 atype +3 time \(=\)
 worng wing \(15 / \mathrm{P}\). long.
}

Railway with a concrete arch.
\begin{tabular}{|c|c|}
\hline \({ }_{6}\) & headboards are gone and little remains to identify the Conce curnting on the. 51 at Anlelur dping. \\
\hline 7 & 157.24-157.49 (157.43-157.70) TERRACE A gravel-strewn \\
\hline 9 & apland, 10 to 15 ft . above the railroad grade, 55 to 65 ft . \\
\hline & e the river, rises inland to 200 ft , above the river \\
\hline 11 & at the top of the hill. The gravel exposed along the rail- \\
\hline
\end{tabular}
road consists of cobbles and boulders, up to \(11 / 2 \mathrm{ft}\). in
dianeter, in orange brown silty sand. hot ioith in aummn.

17

18 Maryland Railway expose gravel 40 to 60 ft . above the river. 19
\begin{tabular}{|c|c|}
\hline & 253.57-161.53 (158.59-161.70) OUTCROP A lons section of \\
\hline 22 & the Chemung Formation is exposed in cuts on the Westerm \\
\hline 23 & daryland Railway westward to Lock 67. \\
\hline \(25-\) & piagram 3 tiers of profiles per page-each pg., 8 m \(14^{n I}=\) 4" \(\mathrm{x}=7\) ", 5pages. Field notes 11/11/69. \\
\hline
\end{tabular}

Chul shate 157.30-157.41
hotrivike in rumar.

\begin{tabular}{|c|c|}
\hline & structed 1838, 1848-50. This was originally a componite \\
\hline 1 & lock, but the chamber and berm coping were later faced with \\
\hline 3 & concrete. The rest of the lock is coursed rubble, mainly \\
\hline 4 & purplish red Catskill sandstone. The towing path coping is \\
\hline 6 & cut red purple sandstone, some pebbly gray sandstone and \\
\hline 7 & limestone. Coping at the circular quoins is catskill red \\
\hline 9 & sandstone. The wings and the spillway for the flume at the \\
\hline 110 & lower end of the lock are red sandstone. Some white Ridge- \\
\hline 12 & ley (Oriskany) snadstone is in the spillway. The flume is \\
\hline 13 & on the berm, 25 ft . from the lock. A 15 ft mound on the \\
\hline 14 & \\
\hline 15- & upper berm is probably the remains of a crib fender. Notch \\
\hline 16 & for crib fender timbers are on the upper towing path and \\
\hline 17 & Ior crib render timbers are on the upper towing path and \\
\hline 18 & berm ends of the lock. Slots for insert boards of a stop \\
\hline 19 & gate are at the upper end of the lock. Sandstone blocks \\
\hline 20- & gate are at the upperend of the lock. Sandstone blocks \\
\hline 21 & at the west end of tine locic are grooved by ropes and the \\
\hline 22 & scraping of boats. The lockhouse was formerly along the \\
\hline 23 & \\
\hline 24 & towing ppath but it was carried away in the flood of Harch \\
\hline \(25-\) & \\
\hline
\end{tabular}
(

Page 527 is void.

1936; reddish gray sandstone rubble foundation are all that remains of the house.
\(161.60(161.74)\) CULVERT 215 BIG RUN Constructed 1838, 562.91

1846-49. This structure served as a road culvert until 1922.
6
The arch has 5 tiers of brick with a \(\mathcal{L Z} \mathrm{ft}\). span and a 6 ft . rise.
The parapet and coping are 2 ft . high and are reddish gray

Catskill sandstone coursed rubble. The wings are reddish
10- at righly anple, \(12 / y\) lons, 9 strep.
gray sandstone rubble. Cuts on the Western Maryland Railway
and Maryland Highway 51 expose Catskill red sandstone and
shale. The beds strike \(\mathrm{N} 35^{\circ} \mathrm{E}\) and dip \(30^{\circ}\) to \(45^{\circ}\) SE. Expos-
ures of red beds are terrace gravel continue west in the

17 railroad cuts to Town Creek. 10/t. emtrabent abon equing.
162.1563 .21 Town Creek H.B.O.

563.55 - 563.60 wade wivis; caysavry cenoss cind hovien writh wasis. Cancl 200 filuide und g waert wivo. (528)

\begin{tabular}{|c|c|}
\hline & resses at the junction of the wing walls and the aqueduct \\
\hline 2 & are scabbled white sandstone. The wing walls are scabbled, \\
\hline 3 & reddish purple Catskill Sandstone and some white sandstone. \\
\hline \(5-\) & They are battered. The approach walls are catskilln Sand- \\
\hline 6 & stone coursed rubble. The limestone (Tonoloway Formation) \\
\hline 7 & \\
\hline 8 & in the structure is from Hatchs quarry, near the mouth of \\
\hline 9 & South Branch in West Virginia. The white sandstone (Ridge- \\
\hline 10- & \\
\hline 11 & ley formation) is from a quarry on Town Hill. The reddish \\
\hline 12 & brown and purple sandstone (Catskill Formation) are from \\
\hline 13 & \\
\hline 14 & small quarries along the line of the canal near the aque- \\
\hline 15- & duct. An iron railing was placed on the towing path side \\
\hline 16 & \\
\hline \({ }^{17}\) & of the aqueduct in 1856 but none remains (1971). A road \\
\hline 18 & formerly passed under the aqueduct and was in use to the \\
\hline 19 & \\
\hline 20- & early \(1900^{\circ} \mathrm{s}\). On the berm, the parapet east of the key- \\
\hline 21 & stone has fallen and the buttresses have moved out from the \\
\hline 22 & \\
\hline \({ }^{23}\) & wing walls (1971). Siliceous material in the limestone \\
\hline 24 & ringstones stand \(1 / 4\) inch in relief where solution has \\
\hline
\end{tabular}
etched the more soluble limestone since the stones were cut
in 1838. Willis Hatch, the original contractor for the aqueduct absconded in 1838 leaving large debts.

Western Maryland Railway Bridge no. 1474 is 100 ft . north of the canal. It has 2 short deck plate girder spans at the ends and a long deck plate girder in the center. It Bulges on a cured plan was fabricated by the Pennsylvania Steel Company, Shelton,
with a 16 ft . drainway. No trace of it remains now (1971)

Lock 68, formerly was known as Harness Farm Bottom.
24

25
\(x\) x
just west of aqueduct \({ }^{x}\) on the berm side. \(]\) It emptied across

165.53-166.30 (165.67-166.44) TERRACE A rolling, gravel-
2

P442-478
addenda.fra
- bservaitimes

12 oct. 1975.
platy shale. There is no lockhouse at Lock 69. Several
 canal boats were wunk with stone at the tails of Locks 69
and 70 after the canal ceased operations in 1924.
 Lock 70
166.51 (166.71) LOCK 70 OLDTOWN \(\delta \mathrm{ft}\). lift, constructed

1837, 1847 to 1849. Originally this was a composite lock but most of the lock is now faced with concrete except for the lower wings which are Ridgeley Sandstone in blocks up No inickto menss, mo ming at heady had to \(2 \times-3 \times 4 \mathrm{ft}\). and the coping on the towing path. A 15 Forthidy om lace. ft. revetment on upper beril is probably the remnant of a
crib fender. The concrete at the head of the lock has impressions from old crib timbers. The lockhouse is on the old one repated hurned on 1906
upper towing path side and is 2 story frame and clapboard. \(120^{\prime \prime}\) ade, 15 fr.fhan canal The spillway to the flume on the berm is now walled up. A timber bridge was constructed over the lock in 1849 with 17 ft . clearance above the water level of the canal. It
rested on stone abutments. It was rebuilt in 1886 as a Old mill on matte side of the Potrwear, rast of roud at Cterron Ruly.

The bedding is hidden by fractures. The rocks strike N30 E
2

497.25 Shale ledge i on hum city canal; dip haijutse \(t 10 \mathrm{~W}\). (ugstramen). Shale is

171.05 (171.27) TERRACE DEPOSIT Rounded boulders, mainly
sandstone, up to 3 ft . in diameter are on the river side of 498.25 3 fly treen an side \(g\) tougeth
the towing path.
 MPI7I 498.05
171.17 (171.40) OVERFALL Constructed 1849. The structure is 100 ft . long with a 16 ft . drain. The spillway is 1 ft . below the level of the towing path. It is built of coursed Fidgeley Sandstone rubble, some Catskill brown sandstone and limestone; 581.1 perches of stone and \(250^{\circ} \mathrm{ft}\). of 18 ornbers and nets alougtop.
inch coping are in the spillway. 12 inch coping is in the
wings. The towing path formerly crossed the overfill on a Are aquancect, tough free, 3 thin, enact 18 in . high ; erring 10 io , sugar gray wooden bridge resting on 7 concrete piers.
171.45 (171.67) OUTCROP A cut on the Western Maryland 498.72

Railway exposes Brallier (Woodmont) and Harrell Shale. The beds strike \(\mathrm{N} 30^{\circ} \mathrm{E}\) and dip \(10^{\circ}\) to \(15^{\circ} \mathrm{Se}\). The flood plain on the West Virginia side of the river grades southward to a terrace 40 ft . above the river.

Drawing \(171 .\{7\)
Corrected
\(4 / 24 / 82\)

Canal

culvert. The parapet and coping are 2 ft . high. The face
of the culvert, except the arch stones, is coursed gray
 sandstone rubble. Dings ay bycy anghe
171.97 (172.11) OUTCROP Well-bedded, olive gray shale,

Sach truis Nin.

Maryland Railway and on the berm of the canal. The beds strike \(\mathrm{N} 20^{\circ} \mathrm{E}\) and dip \(35^{\circ} \mathrm{ESE}\).
\(172.19{ }_{499.40}^{(172.33)}\) OUTCROP A bluff on berm contains dense gray sandstone (Mahantango Formation) in beds 10 ft . or oukurp 150 ft . lag
15-more thick. The beds in the western part of the outcrop

\begin{tabular}{|c|c|}
\hline & 51 contains Needmore gray shale which strikes \(\mathrm{N}^{4} 0^{\circ} \mathrm{E}\) and \\
\hline 1
2 & dips \(30^{\circ}\) to \(40^{\circ} \mathrm{SE}\). \\
\hline 3 & \\
\hline 4 & \(173.47-173.57\) (173.47-57) OUTCROP Ledges on Maryland
500.42 \\
\hline \(5-\) & Highway 51 and on the berm of the canal are formed of Ridge- \\
\hline 6 & \\
\hline 7 & ly Sandstone. The beds strike \(N 40^{\circ} \mathrm{E}\) and dip \(45^{\circ} \mathrm{SE}\) on the \\
\hline 8 & east limb of an anticline. On the west limb the dip is \\
\hline 9 & \\
\hline 10- & \(33^{\circ} \mathrm{NW}\). A prominent strike joint dips \(57^{\circ} \mathrm{SE}\). \\
\hline \({ }^{11}\) & \\
\hline 12 & 173.57 (173.57) BRIDGE (FRANKPORTS FORD) Abutments on \\
\hline 13 & the towing path and on a ledge on the berm are the remnants \\
\hline 14 & lin. bodur sdge dreced anface \\
\hline 15- & of a bridge constructed in 1849. It was a timber span 64 \\
\hline 16 & ft. long. The abutments are rough dressed blocks of Eidge- \\
\hline 17 & \\
\hline 18 & Iey Sandstone from a quarry on Patterson Creek in West \\
\hline 19 & Virginia. The bridge was destroyed by the Confederates on \\
\hline \(20-\) & \\
\hline \({ }^{21}\) & February 2, 1864 and was rebuilt later. \(500 \mathrm{~W}-500.72\) Bust hain 400 fl . weikg hedge, up \(t\) looft. inde. \\
\hline 22
23 & 173.61 (173.61) CULVERT 231 COLLIERS BUN Constructed \\
\hline \({ }^{23}\) & 173.61 (173.61) CuLVEAK 231 coLLlam nu \\
\hline 24 & 1846-48. The arch stones are hammer-dressed gray Ridgeley \\
\hline \(25-\) & \\
\hline
\end{tabular}

Sandstone. The arch has a span of 12 ft . and a rise of 6 including ahuthach
ft. 18fingstones and a keystone are in the face of the arch.
84,250 bricks are in the inner part of arch in the barrel of
the culvert. The parapet and coping are 2 ft . high. The parapet, spandrels and coping are rough cut Ridgeley Sand-

8 stone.
500.72 begir suntandention turn
\(501.04=M P 77\)
\(173.98(174.13)\) PUMP This facility was constructed 1873 to 1874 as a supplementary feeder to the canal. The remains

13 of the structure is 50 ft . southwest of the towing path.

The boiler and pump machinery house were side by side. The

16 pump was on cement foundation with footings of sandstone and
bricks. The brick boiler room and engine house were on the

19 southeast side of the pump. A well for the pump, 6 ft . in
20-
diameter, that was on the canal side of the pump is now

22 covered by wood. It was connected with a concrete trunk
23
24
leading to canal and with a culvert \(61 / 2 \mathrm{ft}\). high, 6 ft .
25- Wide to the river. The centrifugal pump was 2 ft . 8 inches

14
\begin{tabular}{l|l}
\(15-\) & signed for efficiency as they were used. The initial cost \\
16 & of the installation was \(\$ 20,504.40\). The steam engine was \\
18 & replaced by an internal combustion engine during World War
\end{tabular}

A date, 1911, is in the concrete. An outcrop of Ridgeley

\begin{tabular}{|c|c|}
\hline & the berm were formerly bases for the fuel tanks for the \\
\hline 1 & \\
\hline 2 & pump below the lock. \\
\hline 3 & \\
\hline 4 & An outcrop on the Western Maryland Bailway exposes an \\
\hline \(5-\) & anticline in medium to thin bedded gray Keyser Limestone. \\
\hline 6 & \\
\hline 7 & The beds strike \(\mathrm{N} 40^{\circ} \mathrm{E}\) and dip \(10^{\circ}\) on each flank. Blue Sp \\
\hline 8 & one of the largest in Maryland, is on the river shore, 200 \\
\hline 9 & \\
\hline \(10-\) & ft. southeast of the lock. \\
\hline \({ }^{11}\) & \\
\hline 12 & 174.33-174.41 (174.48-174.56) OUTCROP A cut on the west- \\
\hline 13 & ern Haryland Railway exposes Ridgeley gray sandstone which \\
\hline 14 & \\
\hline \({ }^{15}\) & strikes \(\mathrm{N} 30^{\circ} \mathrm{E}\), dips \(40^{\circ} \mathrm{SE}\) on the east limb of an anticline \\
\hline 16 & and \(45^{\circ} \mathrm{NW}\) on the west limb which is exposed in the berm of \\
\hline 17 & \\
\hline 18 & the canal. A prominent vertical, transverse joint cuts the \\
\hline 19 & rock. Strike joint dip is \(50^{\circ} \mathrm{Nw}\). An exposure of dark gray \\
\hline \(20-\) & \\
\hline \({ }^{21}\) & Keyser İmestone is in a low bluff on berm. \\
\hline 22 & \\
\hline 23 & \(174.55-174.83(174.70-174.98)\) OUTCROP There are inter-
\(501.51-501.58\) (\\
\hline 24 & ittent exposures on the berm and on ledges along Maryland \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\(\square\) LOCK - ALL STONE
\[
\cdots
\]} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline & Some blocks are pebbly. A drop gate was installed at the \\
\hline 1 & head of the upper recess in 1875. An iron pulley and pilin \\
\hline 2 & \\
\hline 3 & remain. A notch for gears and slots for control rods are \\
\hline 4 & in the recess. The circular quoins in the upper recess are \\
\hline \(5-\) & \\
\hline 6 & covered by a 2 ft . concrete extension which has slots for \\
\hline 7 & an insert board stop gate. Lock had a dry gate in uppn Menses. \\
\hline 8 & an insert board stop gate. lok haea dregat in ur \\
\hline 9 & The flume is on the berm, 15 ft . from the lock, and \\
\hline 10- & \\
\hline 11 & has an overfall spillway 8 ft . Wide at the front of the \\
\hline 12 & \\
\hline 13 & lock. Blocks of limestone in the spillway have veins of \\
\hline 14 & quartz pebbles \(1 / 2\) to 2 inches wide with pebbles up to \(1 / 4\) \\
\hline 15- & inch in diameter. These blocks also have masses of fossil \\
\hline 16 & \\
\hline 17 & shells (coquina); some Ridgeley Sandstone blocks are in the \\
\hline 18 & spillway. Solution erosion to a depth of one inch is on the \\
\hline 19 & \\
\hline 20- & face of limestone blocks in the spillway. A pile of cobbles \\
\hline 21 & 15 ft . long is on the upper berm with timbers embedded in \\
\hline 22 & \\
\hline 23 & it. This is the remmant of a crib fender. A similar but \\
\hline 24. & smaller pile of cobbles, 12 ft . long, is on the lower berm. \\
\hline
\end{tabular}

4
line limestone. The arch has a span of \(\$ \mathrm{ft}\). and a rise of

2 ft. 6 ringstones and a keystone are in the face of
the arch. Fossil corals are prominent in the limestone. The concrete parapet is 2 ft . high and abutments are 1 ft . high. The spandrels and wings are concrete with some Ridge-
ley Sandstone blocks in the upstream wing. A pile of cobbles and boulders up to 1 ft . size, mainly sandstone, are on the downstream side of the parapet. Bun entaukent suds at 506.25
179.29 (179.37) CULVERT 237 AND WASTE WEIR Constructed 506.36

1838-41, 1849. The arch is hammer-dressed limestone with
a 5 ft . span and a \(21 / 1 \mathrm{ft}\). rise. 8 ringstones and a key-
stone are in the face of the arch. The abutments are \(1 / 2\)
No wing - straight face
ft. high. A drop of 5 ft . below the pavement is at the
mouth of the culvert on the towing path side. The parapet
and coping are 2 ft . high. The coping is hammer-dressed
lImestone. The spandrels and parapet are roughly dressed 10 fr . embankment aton crying.
Ridgeley sandstone with casts of fossils prominent in the

 507.48 atripaces, 40 pr. wide
507.55-birm on subroukinut - esofuls to Eivits Cosek Afreeduct.
180.61 (180.67) EVITTS CREEK (NO.11) AQUEDUCT
507.67
ed \(1838-40,1849\). The aqueduct has a single segmental arch
with a 70 ft . span and a 14 ft . rise. 50 ringstones and a
keystone are in the face of the arch. The aqueduct is 160
ft. long between the ends of the wings. The parapet and coping are 7 ft . high with the top of the coping 27 ft . above stream level and 34 ft . above the foundation. The parapet is 7 ft . wide at the top and \(71 / 2 \mathrm{ft}\). at the base on the towing path side. It is 5 ft . wide at the top and \(51 / 2 \mathrm{ft}\). at the base on the berm. The waterway is 21 ft . wide. A 6 inch belt is a foot above the keystone at the face of the aqueduct. The arch stones, skewbacks, water table, coping and the inside of the parapet are cut stone. The spandrels and other face stones are scabbled. The stone is compact, fossiliferous Tonoloway Limestone from a quarry 3 miles up Evitts Creek. The limestone is siliceous with globs of reddish brown iron oxide up to 4 inches

470 c

wiley Ford
\(\left[\begin{array}{l}182.60(102.65) \text { CULVERT } 241 \text { Constructed 1848. The semi- } \\ 509.63 \\ \text { circular arch is hammer dressed limestone with a span of } 4 \\ \text { ft., and a rise of } 2 \mathrm{ft} \text {. The parapet is } 2 \mathrm{ft} \text {. high and is }\end{array}\right.\)
coursed sandstone rubble. The culvert is filled to the arch bering at sgt angles - buried.
(1971): Virginia Avenue on the east side of the culvert 509.62
crosses the canal on a single steel culvert 15 ft . in dianmeter fitted between sandstone blocks from the abutments of
bridge that formerly crossed the canal here. The bridge

Was constructed 1838-40 and 1848-49. It was covered timber
lattice (Town) truss with a span of 64 ft. on high stone

 and explant fenced in prow.
for automobile traffic. The bridge over the Potomac River
at Wileys Ford to the south is 3 deck girder spans, reinforced with trestle bents and towers. 2 pr. conhinated anal paige suet upstream of culurst drains canal.
182.60-183.05 (182.65-183.10) TERRACE The flat area on the berm is a terrace 20 ft above the river. 24 \(25-182.90\) (182.97) \(\frac{\text { WESTERN MARYLAND BAIL WAY BRIDGE NO. } 1631 .}{509.95}\)

Recovers acts
of damage 1884
does not show any damage to bridge av
wiley Ford. C.O my moor han dive hod
responsibility for bridge. UPS - Bears
The Bridyes/itg Indicates c. 1890 date forlation sues. chard \(x\) SRCfor 140c-1910 for dinky.
complowini
of Pew Being.
 coth, hand, strong rough ryoctreame. (598)

183.20 (183.27) EIGH GUARD GATE Constructed 1849. The coping is concrete with scabbled Ridgeley sandstone blocks in the rest of the face. Some limestone rubble is in the base along the towing path. The main gate was on the west side (towing path) side with a water level control gate on the berm. The sandstone was from a small quarry on the berm. The lock was used to retain water in the Cumberland basin when the rest of the canal was drained. wast win in comalhe? - no.

183.43 (183.50) WASTE WEIR The original stone overfall, 510.55

60 ft . long, was constructed in 1849 across the mouth of a ravine. The limestone and sandstone coursed rubble of this structure forms the base for the present concrete structure, which is 150 ft . long. gates.
\(8^{\prime \prime} \times 8\) " \(\longrightarrow 4\) "xu" diagram waste weir
Brat tain what of wash win and at wack orin \(80-100 \mathrm{ft} \cdot \mathrm{ind}\).

STOPLOAK* 7 ALLSTBNE BASC -CONCRETE TOP5'

The other lock was a 13 ft. high water guard lock. A lock-

William E. Davies
1917-1990

\section*{Memorial to William E. Davies \\ 1917-1990}

The enthusiasm, ebullience, curiosity, competence, and dedication that so characterized Bill Davies melded to create an outstanding engineering geologist, explorer, speleologist, teacher, and public servant. The exciting adventures, productive achievements, and humorous incidents shared with Bill provide his numerous friends and colleagues with warmly nostalgic and treasured memories.

Bill Davies was bom on Christmas Eve 1917 in Cleveland, Ohio, to William R. Davies and Florence (Koch) Davies. He and a younger brother, Jack, shared a close family relationship with many devoted aunts, uncles, and cousins. There were nearly weekly gatherings of the clan via travel on the rapid transit that sparked Bill's lifelong interest in railroads.

The Davies family moved to East Orange, New Jersey, when Bill was about 12 years old. Their house on Maple Avenue backed up to the commuter railroad tracks of the Delaware Lackawanna and Western Railroad, where Bill monitored the conversion of the line from steam to electricity. He read everything available about the D.L. and W. Railroad as well as the Pennsylvania and Baltimore and Ohio railroads. Later, in response to a high school (Carson Long Institute, New Bloomfield, Pennsylvania) assignment, Bill, his brother, and a friend, George Hicks, surveyed the dug but unfinished five tunnels of a proposed route of the Susquehanna River and Western Railroad between Harrisburg and Pittsburgh. This route would cut several hours off the running time of the Pennsylvania Railroad between the same two cities. That project was Bill's first engineering study, resulting in his first research paper. It was at this time that Bill met Frank Tressler, an attorney and amateur geologist who introduced him to the many outcrops of fossil beds in the Perry County, Pennsylvania area. It was there also that Bill first visited and surveyed many caves.

The early convergence of Bill's interest in engineering and in geology led him naturally to the Massachusetts Institute of Technology, which he entered in 1935. Sharpening his skills in mathematics and in physics, he graduated in 1939 with a major in geology and a minor in geophysics. He then accepted a graduate assistantship in the geology department at Michigan State College. In addition to his departmental responsibilities, he was a summer field assistant with the Pennsylvania Geological Survey conducting geologic mapping in the south-central part of Pennsylvania. The geology department secretary at Michigan State College was a keen judge of character and introduced Bill to Geraldine Hall. After Bill received his M.S. in June 1941, the two were married in November 1941. Gerry became his lifelong partner, frequently accompanying him into the field and at his numerous international meetings. She appreciated his interest and his dedication, and she contributed substantively to his work.

Bill entered the U.S. Army in July 1941 as a second lieutenant with the Corps of Engineers and was stationed at the Engineer Reproduction Plant at Fort McNair and later at the Army Map Service, both in the Washington, D.C. area. At the map Research Department, he started with one assistant, and by August 1944, he was Captain Davies, Chief of the Map Research Department, with a staff of 70. They produced thousands of maps for strategic planning of ground and air operations, as well as handkerchief maps for pilots bailing out and for inclusion in loaves of bread for prisoners of war. Bill recalled delivering to the White House classified maps destined for Winston Churchill. When the war ended, Bill was a Major and later retired from the Army Reserves in 1963 as a Lieutenant Colonel. After leaving military service in 1946, Bill remained at the Army Map Service as a civilian in charge of gathering map intelligence data.

In May 1948, Bill left the Army Map Service and joined the West Virginia Geological Survey for an investigation of the caves and karst of West Virginia. The work was initiated
primarily because of the interest at that time in the use of caves as defense shelters. Thomas W . Richards, then a student at Dickinson College, was Bill's field assistant during the summer of 1948, and related the following recollections of their work together.

Working from \(71 / 2\) minute quadrangles on which Bill had plotted all the limestone outcrops and known caves, they visited every outcrop they could, and queried farmers about the presence of any caves, sinkholes or pits.

Richards quickly learned that Bill favored large breakfasts and dinners, but skipped lunch. For daytime survival, Richards carried a loaf of bread and jars of peanut butter and jam in his pack. Bill accepted a sandwich only once, on a day in which they had breakfasted lightly. By summer's end, Bill had added approximately 150 new caves to the then-known inventory. They worked on the future publication Caverns of West Virginia during the week and moonlighted in Maryland on Saturdays and Sundays doing fieldwork for the subsequent book, Caves of Maryland. Caverns of West Virginia, describing the caves of the state, their origin, and the features of the karst related to the caves, was published by the West Virginia Geological Survey in 1949. It became a bestseller that has gone through three editions. Caves of Maryland was published in 1950.

Bill's long and productive career with the U.S. Geological Survey started in August 1949 when he was asked to join the Military Geology Branch by its perceptive chief, Frank Whitmore. The Corps of Engineers largely funded that branch, and Bill's expertise and familiarity with the engineering geology needs of the military were extremely valuable professional assets. In one of his early assignments, Bill was chosen as the site selector for the first underground installation in the United States, at Raven Rock (Camp Ritchie), Maryland. In June 1953, I accompanied Bill to Thule Air Force Base (Greenland), which at that time was being enlarged. Bill seized upon the availability of helicopters as a rare opportunity to extend the range of our work and to map an extensive region including offshore islands that previously had received only reconnaissance coverage. By-products of that work included a detailed report on the geology of this area published in Denmark in 1963 by the Meddeleser OM Gronland.

On March 19, 1954, Bill joined Justice William O. Douglas and eight other naturalists, conservationists, and newspaper editors for that memorable hike from Cumberland, Maryland, to Washington, D.C., along the 184.5 miles of the Chesapeake and Ohio Canal. In a misguided campaign to make the scenery along the Potomac River more accessible to the public, the Washington Post had suggested that a parkway be constructed over much of the canal. Justice Douglas, in an eloquent plea, challenged the editors to get acquainted with the canal by hiking its length with him. The editors of the Washington Post accepted the challenge, and after the hike, they dropped their support of a parkway. It was the start of Bill's love affair with the canal and of his close relationship with Justice Douglas. Almost all of the engineering geology concerning the canal's construction and its subsequent designation as a national park was mapped or assembled by Bill for the use of Justice Douglas in preparing the requisite legislation.

During the period of 1954-1955, Bill sailed to Antarctica aboard the icebreaker U.S.S. Atka for the purpose of selecting sites suitable for U.S. research stations during the International Geophysical Year. His choices were based on his keen assessment of each site's purpose, its supply needs, and its proximity to its study subjects, whether they were penguins or large ice masses. The Davies Escarpment in Antarctica was named in honor of his work there.

Bill was appointed assistant chief of the Military Geology Branch in January 1955. In February 1956, Bill became chief of the Alaska Terrain and Permafrost Section of the Military Geology Branch. That group consisted of glacial geologists, geomorphologists, and botanists, several of whom had been students of Kirk Bryan at Harvard and who had conducted pioneering studies on the surficial and geomorphologic implications of permafrost. Bill's stewardship provided guidance in utilization of the results of these research studies toward their application to engineering geologic problems. In addition to his administrative duties, Bill resumed his field studies in the ice-free land of northern Greenland. This work was done in cooperation with the
U.S. Air Force for the purpose of establishing austere airfields with little or no construction effort. It was a unique opportunity to do detailed ground investigations of otherwise inaccessible regions and to combine engineering geology with observations of the glacial geology and geomorphology of areas that had been seen only from aerial photos.

In early June 1960, Bill crossed the Greenland Icecap by helicopter and joined a group that had established a base camp at Centrum Lake, northeast Greenland. Using two H-34 helicopters, the group conducted fieldwork from the Centrum Lake base camp from June 14 to July 1, 1960. It was during this period that Bill discovered and explored the farthest north caves in Greenland, at 81 degrees N . These caves, comparable in size to caves in the temperate zones, contained 12 levels in a vertical range of 1000 feet and are valuable indicators of glacial limits in northern Greenland. On July 2, 1960, with two helicopters and a party of ten, Bill led an epic journey across northeast Greenland to Cape Morris Jesup, the northern tip of Greenland. On July 4,1960 , the party was the first to set foot on Coffee Club Island, an offshore moraine and the northernmost land on Earth. Bedrock and unconsolidated materials were mapped, raised marine beaches were measured, and samples were collected, including shells for radiocarbon dating. Several published reports resulting from these investigations established, among other things, that Wisconsin glaciation covered all of northeastern Greenland with a continental ice sheet centered in central Greenland; withdrawal of the ice sheet resulted in marine submergence to a depth of \(225 \mathrm{ft}(68 \mathrm{~m})\) about 5400 years ago.

In mid-July 1960, Bill and I did detailed fieldwork at a potential unprepared landing site at Bronlund Fjord, Peary Land, Greenland. Our equipment included a then revolutionary, newly designed tent of internal aluminum frame construction. The first order of business was to put up the tent for safety, if not survival. By the time we had assembled the world's largest kite, the Greenland wind obliged us with a trial flight! It was all we could do to hold on to the tent while we searched for rocks big enough to hold down the tent flaps. Of course, we had intentionally chosen a site with few large rocks. After what seemed like hours, we had anchored the tent and crawled in to lie down on our sleeping bags. We were exhausted but triumphant. Bill said, "Can you imagine what that might have looked like if some Eskimos had happened by? We would have become part of their legends in our time!" Our fatigue quickly turned to laughter.

Bill was the ideal field companion: considerate, generous, never complaining, and remarkably calm in emergencies. He was a bear for work, and his interest and curiosity always lured him to just one more outcrop.

The summer of 1960 was a vintage time for fieldwork. After the challenges of Greenland, Bill flew to Alaska in late July to examine potential landing sites in the Aleutians and at Anaktuvuk Pass in the Brooks Range. In August 1960, he traveled to Finnmark, northern Norway, where he mapped the engineering geology of several austere landing sites for NATO. It was a far cry from uninhabited northern Greenland. The Lapps, colorfully clothed, were frequent visitors with their herds of reindeer. Bill, always a part of any community, was invited to the social event of that season at Kautokeino, a sellout filming of "Gone With The Wind." The movie dubbed in Swedish was shown to an all Lapp-speaking audience!

From 1961 through 1966, Bill's summer fieldwork was conducted in the Yukon-Tanana Upland of central Alaska. Using helicopters, Bill mapped the surficial and bedrock geology with engineering interpretation for construction and military operations. During the summer of 1967, he conducted engineering geology studies for the U.S. and Australian governments in the central deserts of Australia. After completion of that work, he transferred to the Engineering Geology Branch of the U.S. Geological Survey.

Bill's work then was primarily in the Appalachians, a region that had first elicited his interest in geology and that would continue to stimulate and challenge him. In late 1967, he made a study of the stability of coal refuse banks and tailings dams in cooperation with the U.S. Bureau of Mines. This was followed by two-year effort to locate suitable sites for missile silos in bedrock east of the Mississippi River. In 1972, Bill was the engineering geologist assigned to
investigate the Buffalo Creek, West Virginia, disaster that involved the failure of a tailings dam made of coal waste. The failure resulted in a \(20-30\) foot-high wave of highly turbid water that rushed through a narrow valley, inundating 16 small communities with approximately 130 million gallons of water and coalmine debris and killing 120 people. Bill was appointed by the Governor of West Virginia to a commission to investigate the disaster. The investigation, completed in 1973, resulted in the enactment of legislation to require regulations for critical elements of contemporary coal-mining procedures, especially the construction of coal-waste impoundments. Bill's 1967 studies had identified many coal-waste dumps, including the tailings dam at Buffalo Creek, that were vulnerable to failure. His report generally had been ignored. After the 1972 disaster, Bill was sought for advice by several governmental agencies.

In 1975, he was asked by the Appropriations Committee of the House of Representatives to determine the cause of cost overruns and to evaluate the safety of Gathright Dam in Virginia. It was designed as a hydro-facility, and had been sited on karst. He was asked by the U.S. Department of Justice in 1977 to determine the safety and the practicality of the tailings dams proposed by the Reserve Mining Company, to prevent discharges into Lake Superior. That same year, he investigated for the Corps of Engineers the failure of the Kelly Barnes Dam at Toccoa, Georgia.

Bill's work on the slope stability of the Appalachians was greatly aided by one of his many dedicated and devoted assistants, Greg Ohlmacher, who worked with Bill from 1975 to 1983. Greg reported that Bill, instead of stopping at the boundaries defined by the Appalachian Regional Commission, decided to extend the mapping in order to complete all of the pertinent 2degree sheets. That part of the project was completed as a series of \(71 / 2\) minute U.S. Geological Survey open-file maps. Bill was a major contributor to the Landslide Overview Map of the Conterminous United States, scale 1:7,5000,000 that was published in 1983. In all, he completed an amazing 1539 maps showing landslides and landslide susceptibility in Pennsylvania, Ohio, and West Virginia. He involved many college undergraduates as interns in drafting and compiling the final landslide maps, and he also took many of these students on short field trips in order that they would understand and appreciate what was involved in the work. In 1980, Bill was assigned to the Geological Survey of Indonesia, through the Agency for International Development, to train engineering geologists and to participate in landslide studies in Java and Sumatra.

Bill read and collected books voraciously. His library was one of the best private collections in Washington, D.C. One day in Vancouver, British Columbia, on his way to Alaska, Bill had to visit just one more bookstore with a fine Arctic collection. As he was negotiating a purchase, Police raided the place. Ye Little Olde Book Shop, unbeknownst to Bill, had a backroom with an extensive porno collection!

His bibliography contains more than 200 titles that embrace most aspects of geology, especially engineering geology, geomorphology, glacial geology, and speleology and attest to the breadth and scope of his accomplishments. In addition to these, there are also 50 military geology publications that have security classification and are not listed. He delivered hundreds of lectures in his well-organized and dynamic style, and guided numerous field trips for aspiring geologists.

Bill received the Antarctic Medal for his outstanding work in that continent in 19541955. He was a Fellow of the Geological Society of America, the Arctic Institute of North America, and the Explorers Club, and the American Association for the Advancement of Science. He was a member of the Geological Society of Washington, the Association of Engineering Geologists, and the Virginia Academy of Sciences, and he was president of the National Speleological Society (1954-1956).

No less astonishing than the multiplicity of his professional work efforts and the published results of a prolific scientist was Bill's unsparing dedication to a host of civic causes that required his expertise and that he embraced with vigor, leadership, and inspiration. Bill
represented Falls Church on the Northern Virginia Regional Park Authority for 30 years. Governors Robb and Wilder appointed him to the Cave Board of Virginia and with regard to the C and O Canal, he was the ex officio chief engineer for the National Park Service, and a charter member of the C and O Canal Association, of which he had been an officer or on the Board of directors from 1955 until his death.

Whether it was Thule, Copenhagen, or Djakarta, Bill's warmth and personality elicited instant admiration. He had an extensive circle of friends who looked forward to hosting him and Gerry on their numerous travels to international meetings or on exotic field trips. He was generous of his time and efforts with friends and organizations, and whatever he did, he did well.

When Bill retired from the U.S. Geological Survey in July 1983, his career reflected merely a change in direction and emphasis. He continued to work on completing many of his geologic maps and reports, but used more time for his other pursuits. Chief among these was his intense interest in the C and O Canal, particularly the geology displayed along the canal and the engineering features on and adjacent to it. Not content with having mapped every one of its 184.5 miles on foot, frequently accompanied by Gerry, Bill reviewed all of the archival and library material concerning the canal. Mrs. Patricia Eames of the Office of Public Programs, National Archives, admiringly observed Bill's "impressive skills in organizing and preserving the records of the C and O Canal -- for four years he came in twice a week, working from 8:00a.m. to 5:00p.m. each day."

At the time of his death, Bill was preparing a guide to the engineering and geology of the C and O Canal, including a detailed history of the canal with emphasis on the engineering aspects and an annotated bibliography of more than 1000 publications pertaining to the canal. On Saturday, June 23, 1990, Bill led a Smithsonian tour of his beloved canal. Three days later, quite unexpectedly, he departed on his last great journey.

Those of us who were fortunate to have shared his tent, his office, or his council will cherish those memories. Aspiring engineering geologists can marvel and read from his impressive bibliography that attests to the scope of Bill's contributions to his profession.

His loving family includes his wife, Geraldine H. Davies; a daughter, Pamela G. Davies; his son, William H. Davies; a brother, John A. Davies; and a new grandson, Drew William Davies.

Daniel B. Krinsley
Washington, D.C. 13 March 1993

\title{
An Event in the Legal History of the Chesapeake and Ohio Canal Company
}

\author{
William E. Davies
}

The Chesapeake and Ohio Canal was born in legal controversy and throughout its corporate existence it lived under the constant threat of dismemberment by legal processes. It finally collapsed into bankruptcy and trusteeship in its \(64^{\text {th }}\) year. Nearly 100 major legal cases involving the Canal Company provide information on little known but fascinating aspects of the canal's history. The case described below was the first one for the company and still remains one of Maryland's greatest legal battles.

\section*{Collision at Point of Rocks: The Chesapeake and Ohio Canal v The Baltimore and Ohio Rail Road}

As crowds gathered in Baltimore and in Georgetown on July 4, 1828 to participate in the start of construction for both the canal and the railroad, legal action was well underway that could lead to the quick death of either or both companies. The only practical route to the west for both companies was along the Potomac River and for much of the way the topography provided space for only a single right of way. Surveys for the canal showed that a route along the Maryland side of the river was the only possible one for its use. The railroad, in contrast, had surveyed two routes, one along the Maryland side of the river and another farther north. Since 1827 the Rail Road Company had been obtaining quietly a right of way on the Maryland side of the river by purchase or easement and within a year had control of most of the critical sections between Point of Rocks and Cumberland. During the same period the Canal Company was struggling to organize and did little to obtain a right of way above Point of Rocks.

Early in 1828 the Canal Company realized that the Rail Road Company's control of the right of way on the Maryland side of the river threatened to block its construction above Point of Rocks. On the \(10^{\text {th }}\) of June 1828 the Canal Company in conjunction with the Potomac Company obtained an injunction in the County Court of Washington County, Maryland: to restrain the B \& O from obtaining additional land; to force the railroad to reveal the extent of right of way it controlled; to set aside all conveyance of land obtained by the railroad; and to prohibit county sheriffs from executing warrants for condemnation of land for right of ways.

The \(\mathrm{B} \& \mathrm{O}\) reacted quickly on the \(23^{\text {rd }}\) of June by filing a bill of complaint in the Chancery Court of Maryland in Annapolis. The bill cited 21 points for overturning the injunction and asked that the Canal Company be restrained from obtaining a right of way at points of conflict above Point of Rocks. On the \(24^{\text {th }}\) and \(25^{\text {th }}\) of June the railroad filed two additional bills of complaint justifying its actions and asking further restraint of the Canal Company.

The Canal Company answered the bills of complaint citing numerous acts of the Legislature of Maryland to counter the railroad's claims, especially those claims that alleged the Canal Company had lost its rights because it lagged behind the railroad in completing its organization. The Canal Company also charged the railroad was involved in a conflict of interest because it had used U.S. Army topographical engineers to obtain land parcels for the right of way, although the engineers had been assigned only for the purpose of establishing the route of the railroad.

After receiving the evidence, Chancellor Theodorick Bland on July 21, 1829 ordered the three bills of complaint filed by the railroad be consolidated into one. He also ordered an injunction against the Canal Company as requested by the railroad. In the summer and fall of 1829 the Canal Company presented arguments to dissolve the injunction. Chancellor Bland,
however, countered with an order to establish a commission to make surveys and estimates of cost for consolidated construction of the canal and railroad between Point of Rocks and Harpers Ferry and at other points to Cumberland. Jonathan Knight, Chief Engineer of the B \& O and Nathan L. Roberts of the C \& O worked through the spring of 1830 on the surveys and submitted a report on July 12, 1830.

Based on the surveys the engineers offered a plan of "conjoint" construction that contemplated simultaneous construction of the canal and railroad. The plan provided for the location of the two lines at the "collision" points such that the railroad was on the inland side of the canal. The soil from the cuts would be greatly in excess of the embankment needs of the railroad and would be used to alleviate the deficiency of material for canal embankments. The plan of construction was applicable to five collision points downstream from Harpers Ferry and to 45 miles containing numerous tight places scattered between Harpers Ferry and Cumberland.

Testimony from both sides continued through 1830 and on November 7, 1831 Chancellor Bland issued a decree nullifying the injunction issued by the Washington County Court and making permanent the B \& O injunction against the Canal Company. He also ordered the Canal Company to pay all court and survey costs. The Canal Company appealed immediately and the case moved to the Maryland Court of Appeals.

The Canal Company solicited an early decision from the Court of Appeals and the case was argued from December 26, 1831 to January 2, 1832. Walter Jones and A.C. Magruder represented the Canal Company. The attorneys for the Rail Road Company were Daniel Webster and Riverdy Johnson. The arguments presented to the Chancellor were heard again. Three major points were reviewed: (1) When did the railroad and the canal companies obtain their rights? (2) What rights were granted in the Canal Company's charter? and (3) What rights did the Canal Company derive from the Potomac Company? On January 4, 1832 the Court of Appeals by a vote of 3 to 2 reversed the decree of Chancellor Bland and dissolved the injunction obtained by the Rail Road Company.

Although the Canal Company's position prevailed, it was the loser in the long run. The four years of delay in court proceedings brought it perilously close to the time limit as established by its charter for completion to Cumberland. Although the company had power to continue construction its funds were inadequate. Aggravating this was the great inflation in construction costs that had developed during the period of court action. The railroad had the funds but lacked the power to continue construction. During the time of the court proceedings: the railroad proved that it was a viable form of transportation; it successfully applied steam locomotives to haul trains; and it was forced to adopt a route west of Harpers Ferry on the south side of the river, which because of the topography, placed the roadbed above the level of most floods of the river.

After the Court of Appeals decision the two companies were faced with working out a compromise for construction between Point of Rocks and Harpers Ferry. The railroad put forth a plan for "conjoint" construction but was rebuffed by the Canal Company. Pressure from the Maryland Legislature finally produced an agreement that allowed the Canal Company to build both the railroad and the canal at the tight points at a cost not to exceed \(\$ 100,000\). The railroad agreed to subscribe to 2500 shares of stock \((\$ 250,000)\) of the Canal Company. However, the railroad settled with the Canal Company for \(\$ 226,000\) in lieu of the cost of construction and the stock subscription. The railroad also agreed not to use the Maryland side of the river for a right of way until the canal reached Cumberland or until 1840 if the canal was not completed.

\section*{Selected Bibliography of William E. Davies}

1944 Maps of the East Indies: U.S. Army Map Service, 125 p.
1948 Axis war maps: Surveying and Mapping, v. 8, no. 3, p. 126-134.
1949 Caverns of West Virginia: West Virginia Geological Survey, v. 19, 353 p. (second edition, 1958, v. 19-A, 330 p.; third edition, 1965, v. 19-A, 402 p.)
1950 Caves of Maryland: Maryland Geological Survey Bulletin 7, 70 p.
1951 Mechanics of cavem breakdown: National Speleological Society Bulletin 13, p. 36-43.
1953 Cave dwellers: Encyclopedia Americana, v. 6, p. 144-145.
- Caves: Encyclopedia Americana, v. 6, p. 149-151.

1954 (and Nicol, A.H., and Krinsley, D.B.) Thule area, terrain study of Greenland: Engineer Intelligence Study no. 1, pt. A, U.S. Geological Survey for U.S. Army Corps of Engineers, 53 p .
1955 Introducing the American underworld; the Valley of Virginia, in Celebrated American Caves: New Brunswick, New Jersey, Rutgers University Press, p. 3-18, 13-142.
1957 Rillenstein in northwest Greenland: National Speleological Society Bulletin 19, p. 40-46
- Speleological terms, in Glossary of geology and related sciences: American Geological Institute, National Academy of Sciences; National Research Council, 325 p.
1958 (and Holmes, G.W.) Ice thickness and contaminants: U.S. Geological Survey Trace Elements Investigations Report 705, 30p.
1959 (and Chao, E.C.T.) Report on sediments in Mammoth Cave, Kentucky: U.S. Geological Survey Administrative Report to National Park Service, 117 p.
1960 Origin of limestone caverns in folded rock: National Speleological Society Bulletin22, pt. 1, p. 5-18.
- (and Krinsley, D.B.) Caves in northern Greenland: National Speleological Society Bulletin 22, pt. 2, p. 114-1 15.
1961 (and Krinsley, D.B.) Investigation of airfield sites, Kronprins Christians Land and Peary Land, North Greenland: U.S. Geological Survey for U.S. Air Force, Cambridge Research Laboratories, 51 p .
- Glacial geology of northern Greenland: Polarforschung, bd. 5, jahrg. 31, heft 1-2, p. 94-103.
- Surface features of permafrost in arid areas, in Geology of the Arctic, Volume 2: Toronto, University of Toronto Press, sec. 2, p. 981-987.
1962 (and Krinsley, D.B.) The recent regimen of the ice cap margin in North Greenland, in Symposium on the variations of the regime of existing glaciers: International Association of Scientific Hydrology, Commission of Snow and Ice, Publication 58, p. 199-230.
1963 (and Krinsley, D.B., and Nicol, A.H.) Geology of the North Star Bugt area, northwest Greenland: Meddelesler om Gronland, bd. 162, no. 12, 68 p.
1964 The future of the Potomac, a conflict in values: Atlantic Naturalist, v. 19, no. 4, p. 209-220.

1968 Physiography: Engineering geology, in Mineral resources of Appalachia: U.S. Geological Survey Professional Paper 580, p. 37-48, 80-86.
- Coal waste bank stability: Mining Congress Journal, v. 54, no. 7, p. 19-24.

1969 (with Hansen, W.R.) Hard rock silo programs, siting investigations of the U.S. Department of Interior: U.S. Geological Survey Administrative Report 001-1, 152 p.
1970 Karst areas of the United States; in Cavem areas of the United States: National Atlas, sheet 77 .

Guide to the historical engineering geology, Chesapeake and Ohio Canal: Association of Engineering Geologists Annual Meeting, Washington, D.C., 10 p.
1971 (with Krinsley, D.B., Rachlin, Jack, and Newton, E.G.) Existing environment of natural corridors from Prudhoe Bay, Alaska to Edmonton, Canada: U.S. Geological Survey OpenFile Report, 103 p.
1972 (and Bailey, J.F., and Kelly, D.B.) West Virginia's Buffalo Creek flood; a study of the hydrology and engineering geology: U.S. Geological Survey Circular 667, 32 p.
- (and LeGrand, H.E.) Karst of the United States, in Herak, M., and Stringfield, V.T., eds., Karst: important karst regions of the Northern Hemisphere: New York, Elsevier, p. 467-505.
1976 (and Pomeroy, J.S., and Kohl, W.R.) Map of coal-mining features, Allegheny County, Pennsylvania: U.S. Geological Survey Miscellaneous Field Studies Map 685-C, scale 1:50,000, 2 sheets.
1977 (and Ohlmacher, G.C.) Investigation of the Toccoa Dam failure: US. Geological Survey Administrative Report to Governor of Georgia's Committee of Investigation, 27 p.
1980 (and Wirasuganda, S., Siangian, Y.O.P., and Purwontomo, S.) Landslides in the southern Cianjur area, West Java, Part 1: Characteristics and distribution of landslides: Geological
- Survey of Indonesian-U.S. Agency for International Development, 82 p.

1983 (with Radbruch-Hall, D.H., Colton, R.B., Luchitta, Ivo, Skipp, B.A., and Varnes, D.J.) Landslide overview map of the conterminous United States: U.S. Geological Survey Professional Paper 1183, 25 p., 1 map.
1984 Distribution and characteristics of the karst of the northeastern United States, in Riddle, D.J., ed., Geological and geotechnical problems in karstic limestone of the northeastern United States: Association of Engineering Geologists, p. 1-14.```

